• Title/Summary/Keyword: Shaft vibration

Search Result 654, Processing Time 0.026 seconds

Dynamic coefficients of A High-Speed Rotor Supported by A Slotted ER Squeeze Film Damper (ER 스퀴즈 필름 댐퍼로 지지된 고속 회전 로터의 동적 계수에 관한 연구)

  • Lee, Yong-Bok;Kim, Chang-Ho;Seok, Ki-Young;Lee, Nam-Soo;Choi, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1286-1291
    • /
    • 2000
  • A new electro-rheological squeeze film damper (ER SFD) has been sealed with slotted piston rings which have electrodes at the inside of the constant gap. The slotted ER SFD can prevent the problem of electric discharge which might be occurred in the previous configuration of an ER SFD. The current paper presents the extraction of linearized dynamic coefficients within small orbit where these coefficients are controlled by the application of electric strength. Test rig has been modified to isolate the damper section for dynamic coefficient extraction. The results show that rotordynamic coefficients, damping and inertia terms, increase with increasing supply voltages, while stiffness coefficients decrease with increasing supply voltages. Rotating speed of rigid Shaft does not affect these coefficients.

  • PDF

A Study on the Vibration Characteristics of Rotor System with Fluid Film Bearing (유막 저어널 베어링이 회전체에 미치는 진동 특성에 관한 연구)

  • Park, Seong-Hwan;O, Taek-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.37-44
    • /
    • 2002
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consists of shaft elements, rigid disk, flexible bearing and support structure. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficients are calculated for 2 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system including effects of bearing coefficient and support structures are calculated.

Development of Reducer for Generating Facility of Electric Power for Low Noise/vibration (소음/진동을 고려한 발전설비용 감속기 개발)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.73-82
    • /
    • 2008
  • A dynamic model of reducer for generating facility of electric pourer having bevel gear pair and planetary gear train is developed by lumped method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of bevel gear pair and planetary gear train are considered. Exciting forces of high reducer for generating facility of electric power areconsidered as the mass unbalance of the rotors, misalignment and a function of gear transmission error. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not critical speed.

Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis (AR계수를 이용한 Hidden Markov Model의 기계상태진단 적용)

  • 이종민;황요하;김승종;송창섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.48-55
    • /
    • 2003
  • Hidden Markov Model(HMM) has a doubly embedded stochastic process with an underlying stochastic process that can be observed through another set of stochastic processes. This structure of HMM is useful for modeling vector sequence that doesn't look like a stochastic process but has a hidden stochastic process. So, HMM approach has become popular in various areas in last decade. The increasing popularity of HMM is based on two facts : rich mathematical structure and proven accuracy on critical application. In this paper, we applied continuous HMM (CHMM) approach with AR coefficient to detect and predict the chatter of lathe bite and to diagnose the wear of oil Journal bearing using rotor shaft displacement. Our examples show that CHMM approach is very efficient method for machine health monitoring and prediction.

Excitation Response Estimation of Polar Class Vessel Propulsion Shafting System

  • Barro, Ronald D.;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.463-468
    • /
    • 2011
  • The prospect of Arctic trade transportation opening on a year-round basis creates a vast opportunity of exploring untapped resources and shortened navigational routes. However, the environment's remoteness and lack of technical experiences remains a big challenge for the maritime industry. With this, engine designers and makers are continually investigating, specifically optimizing propulsion shafting system design, to meet the environmental and technical challenges of the region. Further, classification societies recognize the need to upgrade the Unified Rules concerning elements to meet current Polar requirements. Hence in this paper, excitation torque calculation on Polar class vessels propulsion shafting system will be reviewed. The propeller - ice interaction load effect, which is a main consideration of excitation source of Polar Class propulsion shafting system, on shaft design calculation will be analyzed.

  • PDF

Finite Element and Experimental Modal Analyses of Multiple Thin-Disked Flexible Spindle Systems (다중 박 원판을 갖는 유연 회전축계의 유한 요소 및 실험적 모드 해석)

  • 임승철;제인주
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1029-1035
    • /
    • 1999
  • This paper relates to the flexural vibration analysis of slender spindle systems with multiple thin disks, supported by the ball bearings by means of the finite element method. Each system component is analytically modeled taking into account its flexibility and also the centrifugal effect especially for the disk. In order to show the rapid convergence rate and accuracy of the proposed approach, an experimental set-up is built to be versatile. In two distinct cases, its natural modes are numerically computed using only a small number of total element meshes as the shaft rotational speed is varied, and verified through experimental frequency response function obtained by the impact test.

  • PDF

An experimental study on the noise source identification of rotary compressor (공조용 회전식 압축기 소음원 규명을 위한 실험적 연구)

  • Son, Young-boo;Ha, Jong-hun;Lee, Jang-woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.753-759
    • /
    • 2014
  • In this paper, it is investigated that noise generation mechanism of a rotary compressor using experimental method. The measurement was carried out for primary parameters which influence noise characteristics. By using STFT(short time fourier transform), noise sources of a rotary compressor were identified and vibrating modes that increase the noise are verified. Also, it was studied that the correlation between operating speed and noise. Main factors that affect the variation of noise level were considered by the comparison of the experimental results. In addition, a dynamic characteristic of crank shaft was studied and the critical speed was analyzed.

  • PDF

DEVELOPMENT OF AN ACCELERATED LIFE TEST PROCEDURE FOR COOLING FAN MOTORS

  • Shin, W.G.;Lee, S.H.;Song, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.757-762
    • /
    • 2006
  • Reliability of automotive parts has been one of the most interesting fields in the automotive industry. Especially, a small DC motor was issued because of the increasing adoption for passengers' safety and convenience. For several years, small DC motors have been studied and some problems of a life test method were found out. The field condition was not considered enough in the old life test method. It also needed a lot of test time. For precise life estimation and accelerated life test, new life test procedure was developed based on measured field condition. The vibration condition on vehicle and latent force on fan motor shaft were measured and correlated with each other. We converted the acceleration data into the load data and calculated the equivalent load from integrated value. We found the relationship which can be used for accelerated life test without changing the severity by using different loading factors.

Vibration suppression control of two-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 갖는 2관성계의 진동억제제어)

  • Kim, Jin-Soo;Park, Hae-Am;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1133-1135
    • /
    • 2000
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two-degrees-of-freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, a new partial state feedback $H_{\infty}$ controller with resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

Wireless Magnetic Pump: Characteristics of Magnetic Impellers and Medical Application

  • Song, Moon Kyou;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • Wireless magnet pumps are used in medical applications and are particularly useful as artificial heart ventricular assist devices (VADs). To investigate wireless operation of magnetic pumps, we fabricated three types of magnetic impellers using bonded magnets by blending magnetic powders of SmFeN, NdFeB, and Sr-ferrite. We investigated the magnetic properties of the fabricated magnetic impellers, which are driven by the application of magnetic coupling with an external driving magnet or external coil system, without a driving motor, shaft, or mechanical bearings. The use of wireless magnetic pumps is therefore not complicated by critical issues of size, heat, and vibration, which are very important issues for blood pumps. The magnetic properties of the impellers, such as their rotational speed, driving torque and hydrodynamic performance, determine their wireless driving ranges. We conducted performance evaluations of the impeller's magnetic wireless manipulation, heat, and vibration. In addition, we carried out an animal test to confirm the suitability of the wireless magnetic pumps for use as biventricular assist devices (BiVADs).