• Title/Summary/Keyword: Shaft system

Search Result 1,127, Processing Time 0.029 seconds

Evaluation of the Impact on Surrounding Groundwater of Waterway Tunnel Excavation and Cofferdam Construction (터널 굴착 및 가물막이 시공에 따른 주변 지하수계 유동분석)

  • You, Youngkwon;Lim, Heuidae;Choi, Jaiwon;Eom, Sungill
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.5-15
    • /
    • 2014
  • This study is to quantitatively evaluate the impact on surrounding groundwater of waterway tunnel excavation and cofferdam construction in which A-dam and B-dam, so prediction of groundwater fluctuation and tunnel lining installation was studied. As a result, drawdown of groundwater level during tunnel excavation and cofferdam construction occurred about 3.58 m in the tunnel shaft. The initial condition of groundwater level recovered by up to 90 % was simulated after the completed the construction of the tunnel and lining installation. Groundwater inflow in the tunnel evaluated was analyzed to have exceeding water design criteria of the tunnel. The groundwater inflow is reduced to maximum $0.006m^3/min/km$ after lining installation done in the tunnel, so effect of lining installation was evaluated as 93 % or more. Drawdown of about 0.04~0.31 m occurs in the houses and temples analysis of groundwater system of the surrounding area from construction. Drawdown has occurred nearly by considering annual groundwater level fluctuation of National Groundwater Observation Network.

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Effect of Cooling Fan on Domestic Small Diesel Engine (소형(小型)디젤기관(機關)의 냉각(冷却)홴의 성능(性能)에 관(關)한 연구(硏究))

  • Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.97-102
    • /
    • 1992
  • As engine is produced with foreign technology, basic data for cooling fan are very few in korea. Therefore, an experiment was performed to obtain data on cooling fans for the cooling system. The results obtained are summarized as follows: 1. Efficiency of cooling fan was 49.9% while the engine eras running at the rated power. 2. Shaft power of the fan was 0.5 kW maximum at the rated power. 3. Air flow rate of the fan was $12.9m^3/min$. at the rated power. 4. Static pressure of the fan was 29.8 mmHg at the rated power.

  • PDF

A Study on the Practice of Engineering Education in Graduation Standards Certification Process through the Design and Implementation of Drone for Ground Driving and Aerial Flight (지상주행과 공중비행이 가능한 Drone 설계 및 구현을 통한 졸업기준 인증 과정에서 공학교육 실천에 관한 연구)

  • Jang, Woo-Jin;Yoo, Jeong-Min;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Through the design and production of works for the third semester as a major unit, It is proposed the process of satisfying the graduation standards with the design and production process of the drone which can be applied to various mobile environments. Using the shape of Ring Propeller, it is made to be able to play both the role of generating lift as a propeller and the role of a wheel that touches the ground through the surface of the rim. In addition, the Servo Motor is used to convert the drive shaft of the motor to the correct angle according to the command. Then, based on the idea, the 3D printing is implemented to confirm the result of the configuration, and the circuit for driving the propulsion is designed and manufactured. As a result, the conversion of the desired propulsion system during air navigation and operation failed due to the weight increase of the propellant. It is confirmed that the size of the thrust and the tolerance limit of the ring propeller are the errors. Through these processes, it has been recognized to have experience of creative thinking and cooperation through engineering approach and comprehensive design, and confirmed to satisfy the graduation criteria by writing an engineering paper on the result.

An Experimental Study and Numerical Analysis on Load Transfer Characteristics of Drilled Shafts (현장타설말뚝의 하중전이 특성에 대한 실험 및 해석적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • In this study, the load transfer characteristics of the base and skin of drilled shafts were analyzed and the load sharing ratio was calculated by performing a load transfer large-scale model test and three-dimensional numerical analysis considering the similarity of drilled shafts, which is the design target. From the linear behavior of drilled shafts shown in the large-scale model test and 3D numerical analysis results, the skin load transition curve for the design conditions of this study was proposed by Baquelin et al., and the base load transition curve was proposed by Baquelin et al. For the horizontal load transition curve, the formula proposed by Reese et al. was confirmed to be appropriate. The test value was slightly larger than the numerical analysis value for the axial load at the rock socketing, but the load sharing ratio at the rock socketing increased, on average, about 27.8% as the vertical load increased. The analysis value of the vertical settlement of the pile head under the vertical load was evaluated to be slightly smaller than the test value, and the maximum vertical settlement of the pile head in the model test and analysis maximum vertical load was 10.6 mm in the test value and 10.0 mm in the analysis value, and the maximum vertical settlement value at the base of the pile was found to be a test value of 2.0 mm and an analysis value of 1.9 mm. The horizontal displacement at the head of the column (ground surface) and the head of the pile during the horizontal load was found to agree relatively well with the test value and the analysis value. As a result of the model soil test, the horizontal load measured at the maximum horizontal displacement of 38.0 mm was evaluated to be 24,713 kN, and the horizontal load in the numerical analysis was evaluated to be 26,073 kN.

A Basic Study on Particle Distribution Characteristics of Rotary Mist Spraying Device (회전형 미세입자 분무장치의 입자 분포 특성에 관한 기초 연구)

  • Ryou, Young Sun;Jang, Jae Kyung;Kim, Hyung Kweon;Kim, Young Hwa;Lee, Tae Suk;Oh, Sung Sik;Jin, Byung Ok;Oh, Gyoung Min;Kang, Tae Kyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.454-460
    • /
    • 2019
  • The purpose of this study is to analyze the distribution characteristics of mist spray particle size by devising a rotary mist spraying device to develop the evaporative salt water desalination system. The rotary mist spraying device was consisted of a BLDC sirocco fan, a spinning fan, a fan fixed shaft and a salt water supply device etc. In this study we analyzed the characteristics of spray particle size and distribution according to the variation of sirocco fan surface roughness(Ra, ${\mu}m$), revolutions(rpm) and salt water flow rate(mL/min). When sirocco fan surface roughness(Ra) was in the range of $0.27{\sim}7.65{\mu}m$, the spray particle size was $0.117{\sim}1.360{\mu}m$. And then more than 90% of spray particles were found to be less than $0.50{\mu}m$. When sirocco fan surface roughness(Ra) was in the range of $12.70{\sim}22.84{\mu}m$, the spray particle size was $2.51{\sim}184.79{\mu}m$ and more than 98% of spray particles were found to be less than $13.59{\mu}m$. To analyze the effect of fan rotation speed on the size and distribution of spray particles, when surface roughness Ra was fixed $0.27{\mu}m$ and fan rotation speed and salt water flow rate was respectively changed at 3,800~5,600 rpm and 2.77~8.28 mL/min, spray particle size was $0.314{\sim}0.541{\mu}m$. And when salt water flow rate was 9.74 mL/min and fan rotation speed was 3,800~5,200 rpm, spray particle size was in the range of $29.29{\sim}341.46{\mu}m$ and in case of 5,600 rpm more than 98.23% of spray particles were in the range of $2.51{\sim}13.59{\mu}m$.

Experimental Studies on Heat Conductivity of Human Bone and Torsional Strength of Pasteurized Porcine Tibia (생체골의 열전도성 및 열처리된 골의 염전력 변화에 대한 실험적 연구)

  • Park, Il-Hyung;Kim, Sin-Gun;Shin, Dong-Kyu;Ihn, Joo-Chul
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.1 no.1
    • /
    • pp.7-16
    • /
    • 1995
  • In countries where confucianism is popular, it is extremely hard to get fresh cadaver bone for allograft. Therefore in Korea, the reimplantation of resected autoclaved autogenous bone segments has been increasingly performed for limb reconstruction of extremities with malignancies. To preserve the bone morphogenetic protein and mechanical strength of heated bone, many studies have reported that pasteurization of bone is far better than autoclaving over $100^{\circ}C$. Based on this assumption, replacement with a pasteurized autogenous bone graft after resection of a malignant bone tumor was deemed feasible for reconstruction. However, little is known about how high a temperature and how much time for pasteurization is needed to make tumors completely necrotic and to maintain the mechanical strength of bone. Consequantly, experimental studies were carried out to test heat conductivity of human bone and torsional strength of porcine tibia after pasteurization. First, two pairs of human proximal tibia and distal femur were used. We used T-type thermocoples to check core temperature of the bone and a computerized data acquisition system to record results. Without reaming of the medullary cavity, in a $60^{\circ}C$-thermostatic saline tub, it took 32 minutes and 50 seconds to raise the core temperature of human proximal tibia from $20^{\circ}C$ to $58^{\circ}C$, and 30 minutes for distal femur. In a $80^{\circ}C$ saline tub, it took 12 minutes and 50 seconds for proximal tibia, and 11 minutes and 10 seconds for distal femur. In contrast, using porcine tibia whose cortical thickness is similar to that of human tibia, after reaming of the medullary canal, it took less than 3 minutes and 30 seconds in a $60^{\circ}C$ saline tub, less than 1 minute and 45 seconds in a $70^{\circ}C$ tub, and less than 1 minute in a $80^{\circ}C$ tub to elevate core temperature from $20^{\circ}C$ to $58^{\circ}C$. Second, based on data of the heat conductivity test, we compared the torsional strength before and after pasteurization. Twenty matched pairs of porcine tibia were used, The left one was used as a non-heated control group and the right one as a pasteurized experimental group. Wighout reaming of the medullary cavity, there was no statistical difference in torsional strength between the pasteurization of the $60^{\circ}C$-35minute and of $80^{\circ}C$-15minute. With reaming, we also found no statistical difference among pasteurization of $60^{\circ}C$-15 minute, of $70^{\circ}C$-15 minute, and of $80^{\circ}C$-15 minute groups. In conclusion, reaming of the medullary canal is very helpful in saving pasteurization time. And, in a $60^{\circ}C$ saline tub, no significant weakness in torsional strength occurs with pasteurization of the bone for up to 35 minutes. Also no significant weakness in torsional strength occurs with an exposure of 15 minutes to the $80^{\circ}C$ saline tub.

  • PDF