• 제목/요약/키워드: Shaft system

검색결과 1,127건 처리시간 0.025초

Seizure Failure of Engine Crankshaft Bearings

  • Ni, X.;Cheng, H.S.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.162-171
    • /
    • 1995
  • The application of reciprocating engine crankshaft bearings is of particular importance and interest among the plain bearing, not only because the sheer volume of intemal combustion engines now produced, but because the severe operating conditions they are subjected to. Demands for better performances of crankshaft bearings have provide an important impetus in the development of bearings and bearing materials. As engine design progresses toward higher outpt and higher efficiency, crankshaft bearings must perform under more seveve operating conditions. Higher load, temperature, and speed as well as lower viscosity oil are applied to the bearing sysem, resulting in a smaller minimum oil film thickness. This means more solid-solid contact between the shaft and bearing, and the bearing is exposed to more danger of seizure. Some engines may experience bearing seizure problems. However, understanding about the seizure behavior and mechanism is far from being enough. Seizure resistance of a bearing-shaft system will be affected by the properties of the shaft and bearing, especially their materials and surface texture. Commonly used engine bearing materials include Al-Pb-Si, Al-Sn-Si, Al-Sn, and Cu-Pb with Pb-Sn-Cu overlay. These materials have very different properties. They showed different behaviors dering seizure tests and seizure may occur with different mechanism for different bearing material. Shaft materials also affect the seizure resistance of the system. Surface texture of the bearing and shaft have apparent effects on the lubrication and solid-solid contact pattern, and therefore will affect the seizure behavior of the system. Bearings and shafts which are made of different materials and have different surface textures have been tested and analyzed. Their effects on seizure resistance are discussed and possible seizure mechanisms for different beatings are presented in this paper.

헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측 (Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

선박 회전축의 무선 센서 시스템의 전원 공급을 위한 회전식 정전용량-무선 전력 전송 시스템 (A Rotary Capacitive-Wireless Power Transfer System for Power Supply of a Wireless Sensor System on Marine Rotating Shaft)

  • 호앙 반 아이;이영철
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2023
  • 본 연구는 선박 추진 축계의 무선 센서 시스템(WSS) 응용을 위한 용량성 무선 전력 전송(C-WPT) 시스템을 제시한다. 커플링 커패시터 양쪽의 단일 Q 팩터 및 회로에서 무효 전력제거를 위해 양면 LCLC 컨버터 및 변압기 토폴로지가샤프트에서 WSS용 회전식 C-WPT 시스템을 구동하도록 설계되었습니다. 170pF의 용량을 갖는 병렬 연결된 평행판 회전 커패시터가 설회전축의 C-WPT 시스템용으로 설계 및 구현된다. 실험 결과 C-WPT 시스템은 3mm 거리 및 1 MHz 작동 주파수에서 7.8 W 출력 전력으로 66.67 %의 전송 효율을 달성했다. 따라서 제작된 C-WPT 시스템은 회전축의 WSS에 전원을 공급할 수 있음을 증명하였다.

승용차 폐열 회수용 유기 랭킨 사이클 성능 분석 (Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car)

  • 김현진;문제현;유제승;이영성
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

스크롤 압축기의 크랭크축의 동적거동에 관한 수치적 연구 (Numerical Study on the Dynamic Behaviour of a Crank Shaft Used in Scroll Compressor)

  • 김태종;안영재;한동철
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1940-1950
    • /
    • 1993
  • The theoretical investigation is done on the dynamic behavior of a crank shaft used in a scroll compressor. The compression performance of a scroll compressor is directly influenced by the sealing characteristics between fixed and orbiting scrolls, which is related with the dynamic behavior of a scroll compressor. Analyzing the constrained power transmitting system is came to be of importance, accordingly. The equations of motion and interacting forces of a scroll compressor are derived and solved numerically in this paper. The locus of the crank shaft is also obtained by employing the reaction force caused by the oil film of journal bearing. The results show that the crank shaft of a scroll compressor has considerably stable rotating locus.

건설중장비용 카운터샤프트 자동변속기 기어열 레이아웃 설계 (Design of Counter Shaft Automatic Transmission Gear Train Layout for Construction Vehicles)

  • 정규홍
    • 유공압시스템학회논문집
    • /
    • 제6권3호
    • /
    • pp.23-31
    • /
    • 2009
  • Counter shaft transmission is a popular automatic transmission power train in construction vehicles such as wheel loader and forklift. The gear train layout of counter shaft transmission is a very basic and important development stage because it affects the most of components design including hydraulic system and shift control algorithm, etc. This paper presents a design methodology for the gear train layout from the analysis of power flow path and clutch hook-up of the existing counter shaft transmission that is adopted in commercialized construction vehicles. Also, independent constraints for the meshed gear ratios are derived in order to realize forward 4-speed and reverse 3-speed gear ratio. The layout design principle proposed here was applied to the new original counter shaft transmission that is underdevelopment.

  • PDF

회전샤프트의 위험속도에 관한 진동특성 연구 (A Study on the Vibration Characteristics of Critical Speed for Rotor Shaft)

  • 손충렬;이강수;류영현
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.961-971
    • /
    • 2008
  • In the design of a rotor shaft, care should be taken to minimize vibration by taking into account the sources of vibration. In addition, the intensity critical speed, stability, and other related aspects of the system must be considered. especially when it is operated at a critical speed, it is important to address issues related to vibration, as an increase in the whirling response of the rotor shaft can cause damage to the shaft, destruction of the rotor parts, and detrimental abrasions on the bearings. In this thesis, the vibration characteristics of a rotor shaft are investigated through the use of the finite element method. Variations of the diameters and lengths were used to determine the effect of a rotor shaft using Beam No.188(3D linear strain beam) in ANSYS version 11.0 as a universal interpretation program for finite elements. Special care was taken to prevent excessive vibration, which can result from resonance at the initial stage, in the formulation of a dynamic design for a rotor shaft through calculations while changing the diameters and the lengths of the shaft. Moreover, the dynamic characteristics of the critical speed, total mass, D/L(diameter to length) ratio, and natural frequency were verified. Furthermore, the rotor shaft applied by bearing element was calculated and compared by using Combi No. 214(2-D spring-damper bearing).

공동주택에 적용된 Shaft Box형 발코니의 환경성능 검토 (An Investigation of Environmental Performance on Shaft Box Type Balcony Adopted to Apartment Building)

  • 노지웅
    • KIEAE Journal
    • /
    • 제13권4호
    • /
    • pp.27-32
    • /
    • 2013
  • This study focus on shaft box facade, special form of box window construction. It consists of a system of box window with continuous vertical shafts that extend over a number of stories to create a stack effect. The subject building was decided by analyzing various types of exiting apartments. Shaft box type balcony was devised by setting up shaft space at a part of balcony. Air flow and indoor air temperature were simulated, performance of shaft box type balcony was compared with existing types using VE computer simulation program. Research consequence can be summarized as follow: 1) In the case of existing types, the change of window opening rate has only a little effect on the improvement of indoor temperature. But, air flow rate increased two times in the case that changed opening rate 20% to 40% 2) In the case of existing types, the growth of air flow rate has little effect on the improvement of indoor temperature. But, shaft box type represented the remarkable effect on the improvement of indoor temperature as well as the growth of air flow rate.

A Study on the Monitoring System for Engine Control by Measuring Combustion Pressure Continuously in All Cylinders

  • Miharat Yoshinori;Maruyama Yasuo;Okada Yutaka;Kido Hachiro;Nishida Osami;Fujita Hirotsugu;Ito Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.713-721
    • /
    • 2005
  • A marine diesel engine should realize optimal operation efficiency while reducing NOx, PM (Particulate Matters) and other emissions. Fuel injection systems that use electronic control can become an effective means of achieving that objective. However. it still needs some accurate and instant information in order to bring its ability into full potential while sailing on the sea. The important information of them are a shaft torque and continuous combustion pressures of all cylinders. The shaft torque and the propeller thrust described in this paper are measured at an intermediate shaft by using a unique principle that one of two electromagnet coils oscillates a vibrating strip which the length changes with force and the other coil picks up the change of the frequency of the vibrating strip. For further reference, the shaft power meter multiplied the torque by the shaft revolution has already had about 750 sets of sales performance. The research presented in this paper started about ten years ago and is concerned with the development of a combustion pressure sensor that uses the same principle. Recently, the pressure sensor which bears continuous operation has been developed after a hard struggle, that is, the system that consists of a shaft horsepower meter, a propeller thrust meter and a combustion pressure sensor has been completed and has been shown to be reliable. This paper describes the configuration of this system, the material of the combustion pressure sensor, the principle of that, and the improving point of the sensor, and, we finally consider the use of this system.

무선센서 시스템 응용을 위한 선박 추진 축계용 에너지 하베스터 (Energy Harvester on a Ship Propulsion Shaft for Wireless Sensor System Applications)

  • 호앙 반 아이;이영철
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.96-101
    • /
    • 2023
  • 본 연구에서는, 회전하는 축계에서 무선센서 시스템 응용을 위해 에너지 하베스터(EH, energy harvester)를 제안되었다. 무선 센서 시스템(WSS)에 지속적으로 전원을 공급하기 위해 EH를 직경 20 cm의 샤프트에 설계 및 구현되었다. 로터에는 샤프트에 부착된 7개의 U자형 코어에 코일이 쌍으로 감겨 있다. 고정자는 8개의 I-코어에 부착된 8쌍의 자석으로 구성되며 외부 고정 장치에 고정되었다. EH의 발전 전력은 회전자와 고정자 사이의 공기 공극, 코일의 권수, 그리고 축의 회전속도에 따라 조사되었다. 제작된 EH는 300 rpm 및 3 mm 공기 공극에서 최대 2.87 W의 전력을 생산하였다.