• Title/Summary/Keyword: Shaft generators

Search Result 19, Processing Time 0.032 seconds

A theoretical investigation of misfiring effects on the crankshaft torsional vibration of diesel engine (디젤기관 착화실패가 크랭크축계 비틀림 진동에 미치는 환경의 이론적 고찰)

  • 전효중;임영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.94-106
    • /
    • 1986
  • Since the oil shock of '70s the engine makers have developed new types of diesel engine with low fuel consumption. There is an obvious tendency towards the use of poorer quality fuels, such as the residual oil from chemical processes of refinery. The shaft driving generators is also widely adopted on behalf of the auxiliary diesel engines, which are driving on the expensive diesel oil and have high fuel oil consumption rates, and some mania propulsion diesel engines are equipped with reduction gear systems to get better propulsive efficiency by slower propeller revolutions. The propulsion shafting system equipped with the shaft driving generator or the geared diesel engine shafting system has flexible couplings, and it requires extensive investigations of the torsional vibration and torque fluctuation in order to ensure the acceptable operation range in service. The characteristics of misfiring must be especially examined for the high viscosity fuels to be used. Both torsional vibration and fluctuating torque resulted from misfiring, should be examined for thier effects on the flexible coupling and propulsion shafting system. This paper is to investigate and solve the above mentioned problems which must be predicted on the design-stage of marine propulsion shafting system. A computer program is developed to calculate the indicated diagram, fluctating torque and torsional vibration for both normal and misfiring conditions.

  • PDF

A Study on the Transient Phenomenon Analysis of Ship Generator Synchronization (선박용 발전기 동기화시의 과도현상 해석에 관한 연구)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan;Lee, Sung-Gun;Jo, Sung-Kab
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.998-1004
    • /
    • 2007
  • Connecting a synchronous generator to a power system is a dynamic process, requiring the coordinated operation of many components and systems. The goal is to connect the oncoming generator to the system smoothly i.e without causing any significant bumps, surges, or power swings, by closing the ACB when the oncoming generator matches the power system in voltage magnitude, phase angle, and frequency. If oncoming generator voltage is not matched to the power system voltage, reactive power will flow either into or out of the system at the instant of ACB closure. If this voltage difference is too great, the reactive power flow may result in high transient stresses that could damage the windings of the generator. Also, if oncoming generator frequency is not matched to the power system frequency, transient power will flow between generator and power system. If the frequency difference is too great, the transient power flow is reflected into the prime mover shaft, and this may result in excessive shaft or coupling stress. This paper tries to prove the necessity of correct synchronization for ship generators through a transient phenomenon analysis.

Development of a Vibration Diagnostic System for Steam Turbine Generators (스팀터빈 발전기 진동진단 시스템 개발)

  • Lee, An-Sung;Hong, Seong-Wook;Kim, Ho-Jong;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.543-553
    • /
    • 1995
  • Modern steam turbine generators are being built as a higher power and larger system, experiencing more frequent starts and stops of operation due to a constant change of power demands. Hence, they are inevitably more vulnerable to various vibrations, and more often exposed to the danger of sudden vibration accidents than ever before. Even under the circumstances, in order to secure the system reliability of steampower plants and there by to supply safely the public electricity, it is important to prevent a sudden vibration accident in one hand and even when it happens, to raise an operating efficiency of the plants throught swift and precise treatments in the other. In this study, an interactive vibration diagnostic system has been developed to make the on-site vibration diagnosis of steam turbine generators possible and convenient, utilizing a note-book PC. For this purpose, at first the principal vibration phenomena, such as various unbalance and unstable vibrations as well as rubbing, misalignment, and shaft crack vibrations, have been systematically classified as grouped parameters of vibration frequencies, amplitudes, phases, rotating speeds at the time of accident, and operating conditions or condition changes. A new complex vibration diagnostic table has been constructed from the causal relations between the characteristic parameters and the principal vibration phenomena. Then, the diagnostic system has been developed to screen and issue the corresponding vibration phenomena by assigning to each user-selected combination of characteristic parameters a unique characteristic vector and comparing this vector with a diagnostic vector of each vibration phenomenon based on the constructed diagnostic table. Moreover, the diagnostic system has a logic whose diagnosis may be performed successfully by inputing only some of the corresponding characteristic parameters without having to input all the parameters. The developed diagnostic system has been applied to perform the diagnosis of several real cases of steam turbine vibration accidents. And the results have been quite satisfactory.

  • PDF

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

3D Design and Analysis of Cogging Torque in 900kW Permanent Magnet Synchronous Generator (900kW급 영구자석형 동기발전기 3차원 설계 및 코깅 토크 분석)

  • Lee, Sang-Woo;Kim, Tae-Hoon;Kim, Dong-Eon;Chung, Chin-Wha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.443-443
    • /
    • 2009
  • Cogging Torque is induced by the magnetic attraction between the rotor mounted permanent magnet(PM) and the stator teeth. This torque is an unwanted effect causing shaft vibration, noises, metal fatigues and increased stator length. A variety of techniques exist to reduce the cogging torque of PM generator. Even though the cogging torque can be vanished by skewing the stator slots by one slot pitch or rotor magnets, manufacturing cost becomes high due to the complicated structure and increased material costs. This paper introduces a new cogging torque reduction technique for PM generators that adjusts the azimuthal positions of the magnets along the circumference. A 900 kW class PMSG model is simulated using a three dimensional finite element method and the resulting cogging torques is analyzed using the Maxwell tensor stress tensor. Using the 3D simulation, the end contribution of the cogging torque is accurately calculated.

  • PDF

Power Fluctuation Reduction of Pitch-Regulated MW-Class PMSG based WTG System by Controlling Kinetic Energy

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Yona, Atsushi;Senjyu, Tomonobu;Saber, Ahmed Yousuf
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.116-124
    • /
    • 2012
  • Wind is an abundant source of natural energy which can be utilized to generate power. Wind velocity does not remain constant, and as a result the output power of wind turbine generators (WTGs) fluctuates. To reduce the fluctuation, different approaches are already being proposed, such as energy storage devices, electric double layer capacitors, flywheels, and so on. These methods are effective but require a significant extra cost to installation and maintenance. This paper proposes to reduce output power fluctuation by controlling kinetic energy of a WTG system. A MW-class pitch-regulated permanent magnet synchronous generator (PMSG) is introduced to apply a power fluctuation reducing method. The major advantage of this proposed method is that, an additional energy storage system is not required to control the power fluctuation. Additionally, the proposed method can mitigate shaft stress of a WTG system. Which is reflected in an enhanced reliability of the wind turbine. Moreover, the proposed method can be changed to the maximum power point tracking (MPPT) control method by adjusting an averaging time. The proposed power smoothing control is compared with the MPPT control method and verified by using the MATLAB SIMULINK environment.

The Study on a Real-time Flow-rate Calculation Method by the Measurement of Coolant Pump Power in an Integral Reactor (일체형원자로에서 냉각재펌프의 전력측정을 이용한 실시간 유량산정 방법에 관한 연구)

  • Lee, J.;Yoon, J.H.;Zee, S.Q.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.161-166
    • /
    • 2003
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of coolant pump power has been introduced in this study. Up to now, we did not found out a precedent which the coolant pump power is used for the real-time flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the real-time flow-rate calculation method by the measurement of coolant pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs, So, it has been concluded that it is possible to calculate the real-time flow-rate by the measurement of pump motor inputs. In addition, the compensation for a above new method can be made by HBM being now used in the commercial nuclear power plants.

  • PDF

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.

Development of Tacho Generator for Application of Anti-aircraft Weapon System (대공무기체계 적용을 위한 타코제너레이터 개발)

  • Byun, Kisik;Park, Jun Young;Cho, Sung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.174-180
    • /
    • 2020
  • This paper presents the development of a tacho generator that is applicable to a DC motor for anti-aircraft weapon systems. In general, devices such as tacho generators and resolvers are used as feedback devices for controlling DC motors. A tacho generator with a wide operating temperature range was developed, which has robust characteristics against shock loads and vibrations according to the operational characteristics of anti-aircraft weapon systems. The target specifications were set based on the requirements of the tacho generator currently in operation. A rotor coupled to the shaft of the motor and a stator coupled to the housing of the motor were then designed and manufactured. The inductance was 31.0 mH, the terminal resistance was 147.7 ohms, and the rotational measurement factor was satisfactory under both normal operation and operating conditions after the maximum speed for the standard of 9.500 ± 0.475 V/krpm. In addition, the environmental suitability of the applied equipment was confirmed through the rate of change in unit temperature, and it was found that the temperature characteristics were all within 0.03 %/℃.