• Title/Summary/Keyword: Shadowing ratio

Search Result 27, Processing Time 0.024 seconds

A Study on Refresh Time Improvement of DRAM using the MEDICI Simulator (MEDICI 시뮬레이터를 이용한 DRAM의 Refresh 시간 개선에 관한 연구)

  • 이용희;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. The novel junction process scheme in sub-micron DRAM cell with STI(Shallow Trench Isolation) has been investigated to improve the tail component in the retention time distribution which is of great importance in DRAM characteristics. In this' paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced ${\Delta}Rp$ (projected standard deviation) increase using buffered N-implantation with tilt and 4X(4 times)-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N-concentration which is Intentionally caused by ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation. And also, we suggest the least requirements for adoption of this new implantation scheme and the method to optimize the key parameters such as tilt angle, rotation number, Rp compensation and Nd/Na ratio. We used MEDICI Simulator to confirm the junction device characteristics. And measured the refresh time using the ADVAN Probe tester.

  • PDF

Effects of soft handoff region ratio on the reverse link capacity of a DS-CDMA cellular system (DS-CDMA 셀룰라 시스템의 역방향 링크에서 소프트 핸드오프 영역비율의 효과)

  • 전형구;권오준;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1534-1539
    • /
    • 2001
  • In this paper, effects of soft handoff region on the reverse link capacity of a DS-CDMA cellular system are investigated. The reverse link capacity of a CDMA cellular system is calculated at a given soft handoff region ratio (SHRR) and path loss model. The results show that the reverse link capacity increases by 1 ∼ 4 channels according to the soft handoff region ratio and the path loss model. However, in the case of the path loss model having a large attenuation exponent ($\mu$ = 5) and a small shadowing standard deviation ( $\sigma$ = 6 dB), the reverse link capacity is no more increased by increasing SHRR.

  • PDF

Design of 5.8 GHz Patch Array Antenna for FTMS Roadside Equipment (FTMS 기지국용 5.8 GHz 대역 배열 패치 안테나 설계)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • This paper designed the antenna for collecting and servicing the traffic information that apply to freeway Traffic Management System, as using DSRC (Dedicated Short Range Communication). Active DSRC is the technology that is using 5.8GHz Radio Frequency to a mean Sequency and there are a lot of the case occurring a physical electric wave shadowing because of the traveling straight of a electric wave. In such inferior communication environment, it constructed the stabilized communication link that can do collecting and servicing the correct traffic information and designed the beam pattern considering the establishment position of the antenna that can apply to various road environments and a communication area. By considering the communication link environment, this paper designed and manufacture the mean frequency of 5.8GHz, the input loss of -17dB in 75MHz bandwidth, the Axial ratio of 1.5:1, and $2{\times}4$ array microstrip antenna which beam pattern have the characteristic of $55^{\circ}$ horizontal half power beam width and $26^{\circ}$elevation half power beam width and the minimum establishment height of the antenna was designed as 14m for avoiding electric wave shadowing on a physical condition between vehicles

  • PDF

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.

Cooperative Interference Mitigation Using Fractional Frequency Reuse and Intercell Spatial Demultiplexing

  • Chang, Jae-Won;Heo, Jun;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • For mobile wireless systems with full frequency reuse, co-channel interference near the cell coverage boundaries has a significant impact on the signal reception performance. This paper addresses an approach to efficiently mitigate the effect of downlink co-channel interference when multi-antenna terminals are used in cellular environments, by proposing a signal detection strategy combined with a system-level coordination for dynamic frequency reuse. We demonstrate the utilization of multi-antennas to perform spatial demultiplexing of both the desired signal and interfering signals from adjacent cells results in significant improvement of spectral efficiency compared to the maximal ratio combining (MRC) performance, especially when an appropriate frequency reuse based on the traffic loading condition is coordinated among cells. Both analytic expressions for the capacity and experimental results using the adaptive modulation and coding (AMC) are used to confirm the performance gain. The robustness of the proposed scheme against varying operational conditions such as the channel estimation error and shadowing effects are also verified by simulation results.

Ag Paste Using Ag Nanowires

  • Hong, Jun-Ui;Kim, Dae-Jin;Kong, Byung-Seon;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.546-546
    • /
    • 2012
  • Traditional screen printing is still a dominant method to print electrodes on c-Si solar cells. In order to achieve higher efficiency for c-Si solar cells, improvement of the electrode material is one of the key approaches. Shadowing loss can be reduced by using high aspect ratio finger electrode with width of finger electrode less than 80um. The rheological properties of Ag paste for applying c-Si solar cells are improved by using Ag nanowires. The printing properties including the aspect ratio of printed electrode can be improved with higher Thixotropic index (T.I.) values.

  • PDF

Dynamic User Association based on Fractional Frequency Reuse

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Integrative Natural Science
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • This paper proposes a novel fractional frequency reuse(FFR) based on dynamic user distribution. In the FFR, a macro cell is divided into two regions, i.e., the inner region(IR) and outer region(OR). The criterion for dividing the IR and OR is the distance ratio of the radius. However, these distance-based criteria are uncertain in measuring user performance. This is because there are various attenuation phenomena such as shadowing and wall penetration as well as path loss. Therefore, we propose a novel FFR based on dynamic user classification with signal to interference plus noise ratio(SINR) of macro users and classify the FFR into two regions newly. Simulation results show that the proposed scheme has better performance than the conventional FFR in terms of SINR and throughput of macro cell users.

Effect of the Log normal/Nakagami Faded Interferers on Imperfect power-controlled DS/CDMA cellular system (대수정규-나카가미(Nakagami)페이딩을 받은 간섭파가 불완전 전력제어된 DS/CDMA 셀룰러 시스템에 미치는 영향)

  • 현근주;김남수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1107-1114
    • /
    • 1999
  • In this paper, we analyze the effect of co-channel interferers coming from other systems with composite log-normal shadowing and Nakagami fading on the capacity of the imperfect power-controlled DS/CDMA cellular system. The analytical results are compared with the results of Prasad and Jansen in which they derive the result under the condition of imperfect power-control of DS/CDMA system and without considering interference. And the outage probability is calculated fro the effect of the log-normal/Nakagami faded inferers on DS/CDMA system using Schwartz and Yeh's method. With the deviation of outage probability, we analyzed the decreases in the capacity of DS/CDMA system with the variation of the paramenters of the imperfect power-control, the fadig index, the processing gain, the power ratio, the voice activity factor, and the number of interferers. Analysis reuslts have shown that the capacity of DS/CDMA system is very sensitive to the imperfect power-control and the number of interferers. It is shown that the DS/CDMA system capacity decreased according to increase of the deviation of the impertect power-control, the increase of the fading, and the increase of interferer number.

  • PDF

Prediction For Lateral Behavior of Group file Using P - Multiplier (P - multiplier 방법을 적용한 군말뚝의 수평거동 예측)

  • 김병탁;김영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.253-260
    • /
    • 2000
  • Pile foundations have been widely used in civil engineering construction for many years. Structures subjected to large lateral loads usually have pile foundations as shallow foundations cannot sometimes support the moments on these structure. The purpose of this paper is to propose the p - multiplier factor (P$\sub$M/) based on the characteristics of behavior of laterally loaded group pile in homogeneous sand. For this, a series of model tests are performed and the composite analytical method proposed by author is used to the propose P$\sub$M/. Based on the model test results of the large number of laterally loaded group piles, p - multiplier factors for homogeneous sand are proposed by back analysis under various condition of soil density, spacing-to-diameter ratio of pile, number of pile, and spacing-to-diameter of pile. P - multiplier approach provides a simple but sufficient tool for characterizing the shadowing group effects of laterally loaded group pile.

  • PDF

Analysis of Macro-Diversity in LTE-Advanced

  • Kim, Gun-Yeob Peter;Lee, Jung-Ah C.;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1596-1612
    • /
    • 2011
  • Coordinated Multi-Point (CoMP) transmission / reception is being studied in Long Term Evolution-Advanced (LTE-A) for future evolution of the $3^{rd}$ Generation Partnership Project (3GPP) LTE. Support of soft handover is essential for improving the performance of cell edge users. CoMP provides a natural framework for enabling soft handover in the LTE system. This paper evaluates the soft handover gain in LTE-A downlink. Mathematical analysis of signal to interference plus noise ratio (SINR) gain and the handover margins for soft handover and hard handover are derived. CoMP system model is developed and an inter-cell and intra-cell interference model is derived, taking into account the pathloss, shadowing, cell loading, and traffic activity. Reference signal received power (RSRP) is used to define the triggers and the measurements for soft handover. Our results indicate that parameter choices such as handover margin and the CoMP set size impact CoMP performance gain.