• Title/Summary/Keyword: Shadow Image

Search Result 319, Processing Time 0.028 seconds

Evaluation of the postoperative maxillary sinus with computed tomography

  • Kim Hee-Kyung;Heo Min-Suk;Lee Sam-Sun;Choi Hyun-Bae;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.32 no.4
    • /
    • pp.195-200
    • /
    • 2002
  • Purpose: To evaluate the computed tomographic appearances of post-operative maxillary sinuses. Materials and Methods: 33 asymptomatic cases of post-operative maxillary sinus without evidence of any pathologic changes and clinical symptoms were selected. CT images were classified as opacification, soft tissue shadow, anterior wall depression, naso-antral communication, and compartmentalization. The relationships between the CT image and the age of patients at the time of operatation, and between the CT image and the duration of time elapsed since the surgical procedure were evaluated. Results: The most commonly presented radiological characteristics that occurred after the Caldwell-Luc procedure were opacification and soft tissue shadow. Anterior wall depression and naso-antral communication were radiographic indications that a Caldwell-Luc operation had been carried out. The age of patients when they had been first operated on, and the duration between the surgical procedure and the time of evaluation had no effect on the CT appearances of normal changes. In cases involving a longer time interval between the antral surgery and evaluation, the anterior wall depression with bony healing was more commonly observed than soft tissue healing. Conclusion: The radiographic information regarding the normal healing state using computed tomography can distinguish post-operative changes from inflammatory and cystic disease in patients who have undergone a Caldwell-Luc type of radical maxillary antrostomy.

  • PDF

A Study on the Expression of Musical Vitality at the Chapel at Ronchamp - Focusing on the Bergsonian Philosophy of Life - (롱샹 성당에서 음악의 생명성 표현에 관한 연구 - 베르그송의 생명철학을 중심으로 -)

  • Kim, Young-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.5
    • /
    • pp.162-170
    • /
    • 2012
  • This study aims to show the possibility of approaching artistic design through the Bergsonian concept of musical vitality by grasping the expression of his musical vitality at the Chapel at Ronchamp. For the purpose of this study, the aesthetic significance of Bergson's philosophy of life was first contemplated, and a case study analysis was conducted on the vitality of music as temporality at the Chapel at Ronchamp. On this basis, the examples of his musical vitality as metaphysical reality at the Chapel were analyzed. The results of analysis are as follows: First, the Bergsonian vitality of music as temporality at the Chapel is expressed as a sense of movement-through the acoustic form, the modulor corresponding to the scale of the music, the opposite composition of musical changes, the fluid space of the music, and the light and shadow of counterpoint-as having been intended by Le Corbusier in the very process of design. Second, the vitality of music as Bergson's metaphysical reality at the Chapel at Ronchamp is expressed in the image and rhythm of music created by intuitive reminiscences. The acoustic form, the form created by the modulor, the opposite form of composition, the fluid space and the light and shadow as the melody and image of music present continuous diversity as vital flow in a uniform direction. The vitality of music as aesthetical reality is imitated by the rhythm of the music deriving from repetitive movements sensed here. Consequentry, the Chapel at Ronchamp can be seen as a vital design that expresses Bergson's notion of musical vitality, indicating that an approach toward artistic design can be realized through his musical vitality. This study holds significance as basic research on artistic design with philosophy and music as its origin.

  • PDF

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

Quantitative analysis of three dimensional volumetric images in Chest CT (흉부 CT 검사에서 3차원 체적 영상의 정량적 분석)

  • Jang, Hyun-Cheol;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.255-260
    • /
    • 2011
  • We wanted to evaluate the usefulness of three-dimensional reconstructive images using computed tomography for rib fracture patients. The reconstruction used in clinical multi planar reformation(MPR), volume rendering technique(VRT), and image data using quantitative methods and qualitative methods were compared. Much more, the artifact shadow was minimized to reconstruct with 3D volumetric image by using an law data in the analysis of the reconstructive image and chest CT scan of the evaluation result fractures of the thoracic patient. And we could know that the fractures of the thoracic determination and three dimension volume image reconstruction time were reduced.

Luminance Stabilization of Image Sequence (영상 시퀀스의 밝기변화 보정)

  • Lee, Im-Geun;Han, Soow-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1661-1666
    • /
    • 2010
  • Due to light condition or shadow around camera, acquired image sequence is often degraded by intensity fluctuation. This artifact is called luminance flicker. As the luminance flicker corrupts the performance of motion estimation or object detection, it should be corrected before further processing. In this paper, we analyze the flicker generation model and propose the new algorithm for flicker reduction. The proposed algorithm considers gain and offset parameter separately, and stabilizes the luminance fluctuation based on these parameters. We show the performance of the proposed method by testing on the sequence with artificially added luminance flicker and real sequence with object motion.

Robust Traffic Monitoring System by Spatio-Temporal Image Analysis (시공간 영상 분석에 의한 강건한 교통 모니터링 시스템)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1534-1542
    • /
    • 2004
  • A novel vision-based scheme of extracting real-time traffic information parameters is presented. The method is based on a region classification followed by a spatio-temporal image analysis. The detection region images for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shadow, using statistical and structural features. Misclassification in a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. Since only local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized without using dedicated parallel processors, while ensuring detection performance robust to the variation of weather conditions, shadows, and traffic load.

3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.409-412
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Recognizing this potential use of high resolution satellite imagery, KARI is performing a project for developing Korea multipurpose satellite 3(KOMPSAT-3). Therefore, it is necessary to develop techniques for various GIS applications of KOMPSAT-3, using similar high resolution satellite imagery. As fundamental studies for this purpose, we focused on the extraction of 3D spatial information and the update of existing GIS data from QuickBird imagery. This paper examines the scheme for rectification of high resolution image, and suggests the convenient semi-automatic algorithm for extraction of 3D building information from a single image. The algorithm is based on triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and enhance the digitizing accuracy and the computation efficiency.

  • PDF

A Study on Representation of 3D Virtual Fabric Simulation with Drape Image Analysis II - Focus on the Comparison between Real Clothing and 3D Virtual Clothing -

  • Lee, Min-Jeong;Sohn, Hee-Soon;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.3
    • /
    • pp.97-111
    • /
    • 2011
  • This study aims to apply 3D virtual fabric parameters - as obtained from previous research experiments - to 3D virtual clothing simulation in comparing its similarity with actual clothing as worn, with a view to verifying the objectivity and validity of the 3D virtual fabric simulation method devised by the drape image analysis method. In addition, the result is intended to be used as the basic data for new 3D virtual clothing simulation methods. As the results, 3D virtual fabric parameters designed to simulate 3D drape to be similar to actual fabrics were found to be Bending Strength, Buckling Point, Density, Particle Distance, and Shear. They were also found to be important measurements when evaluating visual similarity between drape shadow images and number of nodes. 3D virtual fabric simulation method devised by the drape image analysis method was appropriate in extracting 3D fabric parameters with the reflection of actual fabrics' physical and dynamic characteristics, in connection with 3D virtual fabric simulation. 3D virtual fabric parameters with the reflection of actual fabrics' physical and dynamic characteristics using the proposed 3D virtual fabric simulation method are accumulated and provided as a standard, this will facilitate the introduction 3D virtual fabric simulation technology.

Constructions and Properties of General (k, n) Block-Based Progressive Visual Cryptography

  • Yang, Ching-Nung;Wu, Chih-Cheng;Lin, Yi-Chin;Kim, Cheonshik
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.979-989
    • /
    • 2015
  • Recently, Hou and others introduced a (2, n) block-based progressive visual cryptographic scheme (BPVCS) in which image blocks can be gradually recovered step by step. In Hou and others' (2, n)-BPVCS, a secret image is subdivided into n non-overlapping image blocks. When t ($2{\leq}t{\leq} n$) participants stack their shadow images, all the image blocks associated with these t participants will be recovered. However, Hou and others' scheme is only a simple 2-out-of-n case. In this paper, we discuss a general (k, n)-BPVCS for any k and n. Our main contribution is to give two constructions (Construction 1 and Construction 2) of this general (k, n)-BPVCS. Also, we theoretically prove that both constructions satisfy a threshold property and progressive recovery of the proposed (k, n)-BPVCS. For k = 2, Construction 1 is reduced to Hou and others' (2, n)-BPVCS.

An Improved Reversible Secret Image Sharing Scheme based on GF(28) (유한 체 기반의 개선된 가역 비밀이미지 공유 기법)

  • Kim, Dong-Hyun;Kim, Jung-Joon;Yoo, Kee-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.359-370
    • /
    • 2013
  • Lin and Chan proposed a reversible secret image sharing scheme in 2010. The advantages of their scheme are as follows: the low distortion ratio, high embedding capacity of shadow images and usage of the reversible. However, their scheme has some problems. First, the number of participants is limited because of modulus prime number m. Second, the overflow can be occurred by additional operations (quantized value and the result value of polynomial) in the secret sharing procedure. Finally, if the coefficient of (t-1)th degree polynomial become zero, (t-1) participants can access secret data. In this paper, an improved reversible secret image sharing scheme which solves the problems of Lin and Chan's scheme while provides the low distortion ratio and high embedding capacity is proposed. The proposed scheme solves the problems that are a limit of a total number of participants, and occurrence of overflow by new polynomial operation over GF($2^8$). Also, it solve problem that the coefficient of (t-1)th degree polynomial become zero by fixed MSB 4-bit constant. In the experimental results, PSNR of their scheme is decreased with the increase of embedding capacity. However, even if the embedding capacity increase, PSNR value of about 45dB or more is maintained uniformly in the proposed scheme.