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Recently, Hou and others introduced a (2, n) block-
based progressive visual cryptographic scheme (BPVCS) 
in which image blocks can be gradually recovered step by 
step. In Hou and others’ (2, n)-BPVCS, a secret image is 
subdivided into n non-overlapping image blocks. When t 
(2  t  n) participants stack their shadow images, all the 
image blocks associated with these t participants will be 
recovered. However, Hou and others’ scheme is only a 
simple 2-out-of-n case. In this paper, we discuss a general 
(k, n)-BPVCS for any k and n. Our main contribution is to 
give two constructions (Construction 1 and Construction 
2) of this general (k, n)-BPVCS. Also, we theoretically 
prove that both constructions satisfy a threshold property 
and progressive recovery of the proposed (k, n)-BPVCS. 
For k = 2, Construction 1 is reduced to Hou and others’  
(2, n)-BPVCS. 
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I. Introduction 

A (k, n) visual cryptographic scheme (VCS), where k  n, 
encodes a secret image into n shadow images (referred to as 
shadows) distributed to n participants. The secret can be 
visually reconstructed when k or more shadows are stacked. 
No information will be revealed with any (k – 1) or fewer 
shadows. The reconstruction can be done by the human visual 
system directly without any cryptographic knowledge or the 
need for a computer. Applications of VCS can be found in [1]. 
The first VCS was proposed by [2], which used whiteness to 
distinguish black color from white color. In the VCS of [2], a 
secret pixel is subdivided into m (the pixel expansion) 
subpixels in each of n shadows. Most studies tried to reduce the 
pixel expansion. Some of them, [3]–[6], even have no pixel 
expansion (m = 1) — known as probabilistic VCS (PVCS). 
Hence, a conventional VCS with fixed m (m > 1) is referred to 
as a deterministic VCS (DVCS). Recently, Hou and others [7] 
proposed a (2, n) block-based progressive VCS (BPVCS) with 
a progressive recovery scheme, whereby image blocks can be 
gradually recovered step by step. In Hou and others’ (2, n)-
BPVCS, a secret image, P, is subdivided into n non-
overlapping image blocks; namely, Pi (1  i  n). The 
progressive recovery operates under the assumption that if any 
t (2  t  n) shadows are stacked and participant i (1  i  n) is 
involved, then the image block Pi can be restored. All the 
image blocks can be recovered when all n participants are 
involved in the reconstruction. In other words, each participant 
has their own decryption key for one particular image block. 
However, Hou and others’ (2, n)-BPVCS is only a simple    
2-out-of-n case. In this paper, we discuss a general (k, n)-
BPVCS where a qualified set of participants consists of any k 
( 2) participants. Two constructions — “Construction 1” and 
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“Construction 2” — using nCk–1 and nCk image blocks, 
respectively, are proposed. For k = 2, Construction 1 is reduced 
to Hou and others’ (2, n)-BPVCS.  

The rest of this paper is organized as follows. In Section II, 
we describe the notions of DVCS, PVCS, extended VCS 
(EVCS) with meaningful shadow, and probabilistic EVCS 
(PEVCS), which are the basic elements in our new (k, n)-
BPVCS. Also, Hou and others’ (2, n)-BPVCS is introduced. 
Two constructions of the general (k, n)-BPVCS are proposed  
in Section III. Furthermore, we theoretically prove that they 
hold progressive recovery and security. Our experiments are 
explained along with some discussions in Section IV. Finally, 
conclusions are given in Section V. 

II. Related Works 

1. DVCS and PVCS  

In DVCS, a black-and-white secret pixel is subdivided into 
m black-and-white subpixels in each of n shadows. We use  
“m  h”B“h”W (that is, (m  h) black subpixels and h white 
subpixels) and “m  l”B“l”W, where 0  l < h  m, to represent 
white and black secret pixels, respectively. The collection of the 
corresponding m subpixels in n shadows can be represented by 
an n  m Boolean matrix S = [Si,j], where the element Si,j 
represents the jth subpixel in the ith shadow. If Si,j is a black 
subpixel, then this is represented by “1”; similarly, if it is a 
white subpixel, then it is represented by “0.” Stacking t 
shadows together, the grey-level of each secret pixel (m 
subpixels) in the stacked image is proportional to Hamming 
weight H(v). The vector v is OR-ed m-tuple v = OR(i1, i2, … ,  
it), where i1, i2, … , it are t rows of S associated with the 
shadows we stack. The formal definition for a binary DVCS is 
given as follows [8].  
Definition 1. A (k, n)-DVCS consists of two n  m Boolean 
matrices, B1 and B0. To share a black (respectively white) 
secret pixel, the dealer arbitrarily chooses one row of a matrix 
in the set that includes all matrices obtained by permuting the 
columns in B1 (respectively B0) to a relative shadow. The 
chosen matrix defines the color of this m subpixel block in each 
one of n shadows. The (k, n)-DVCS is valid if the following 
three conditions are met: 
1) In B1, the OR-ed vector v1 of any k out of n rows satisfies 

H(v1)  (m  l). 
2) In B0, the OR-ed vector v0 of any k out of n rows satisfies 

H(v0)  (m  h). 
3) For any subset {i1, i2, … , it}  {1, 2, … , n} with t < k, the 

two collections of t  m matrices obtained by restricting each 
t  m matrix to rows i1, i2, … , it are indistinguishable in the 
sense that they contain the same matrices with the same 

frequencies. 
The first two conditions are called contrast conditions, and 

the third condition is the security condition. Let OR(B1|t) and 
OR(B0|t) denote the “OR”-ed of any t rows in B1 and B0, 
respectively. The authors in [9]–[10] rewrite the conditions in 
Definition 1 as the contrast condition (D-1) and the security 
condition (D-2) as follows; in addition, they theoretically prove 
the equivalence of the condition of (3) in Definition 1 and 
condition (D-2): (D-1) H(OR(B1|t))  (m  l) and H(OR(B0|t)) 
 (m  h) for t = k. (D-2) H(OR(B1|t)) = H(OR(B0|t)) for t   
(k  1). 

In [2], the contrast of a DVCS is defined as the difference  
in weight between a black pixel and a white pixel in the 
reconstructed image; that is,  

1 0( ) ( ) ( ) ( )
.

H V H V m l m h h l
m m m


        

To address the pixel expansion problem, a PVCS adopts the 
frequency of white pixels in an area to distinguish between the 
black area and white area in a reconstructed image. In a white 
area of a reconstructed image, this frequency is higher than that 
in the black area. In [4], Yang proposed a PVCS with m = 1 
(that is, no pixel expansion). A (k, n)-PVCS can be constructed 
by a black set and a white set (C1 and C0) consisting of n  1 
column matrices, respectively. When sharing a black 
(respectively white) pixel, the dealer first randomly chooses 
one n  1 column matrix in C1 (respectively C0), and then 
randomly selects one row in this column matrix to a relative 
shadow. The chosen set defines the color level of the pixel in 
shadows. The author in [4] showed that we can use all the 
columns of the basis matrices B0 and B1 in a DVCS as the    
n  1 column matrices of sets C0 and C1 in a PVCS. Let  
OR(C1 | t) and OR(C0 | t) denote OR-ed t rows in all column 
matrices in C1 and C0, respectively, and P(·) be the appearance 
probability of the “0” (whiteness) in a set. The contrast 
condition and the security condition of (k, n)-PVCS are shown 
as follows: (P-1) P(OR(C1|t))  p1 and P(OR(C0|t))  p0 for t = 
k, where p1 < p0. (P-2) P(OR(C1|t)) = P(OR(C0|t)) for t  (k  1). 

Conditions (P-1) and (P-2) are similar to (D-1) and (D-2), 
but they are in a probabilistic manner. In (P-1), the different 
probability of “whiteness” is used to distinguish between black 
color and white color. Condition (P-2) ensures a (k, n)-PVCS 
scheme that is of the unconditional security type. A secret 
image can be successfully recognized through the different 
probabilities of “whiteness” in the reconstructed image. Since 
the frequency of white subpixels in the white and black areas is 
p0 and p1, respectively, the average contrast of a PVCS is 
defined to be  = p0 – p1 [4]. Since all matrices in C0 and C1  
are n  1 matrices, it can be said that a PVCS has no pixel 
expansion. However, shadows of a DVCS are m times those of 
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a PVCS. We give one example to illustrate the shadows and 
stacked results of both a DVCS and a PVCS. 
Example 1. Construct a (2, 2)-DVCS and (2, 2)-PVCS by  

0
10
10
    

B  and 1
10 .01
    

B  It is observed that H(OR(B1|2)) 

= 2, H(OR(B0|2)) = 1, and H(OR(B1|1)) = H(OR(B0|1)) = 1; 
thus, they satisfy (D-1) and (D-2). Suppose that xByW 

represents 
 

(1 1, 0 0)

yx
   and its permutations. In a  

reconstructed image, the black color is 2B0W and the white 
color is 1B1W; the contrast is  = (h – l)/m = 1/2. Because all  
2-subpixel blocks in two shadows are all 1B1W, they are noise-
like. On the other hand, we can use all two columns of B0 and 

B1 as the 2  1 column matrices in sets C0 = 1 0,1 0
   
      

 and C1 

= 1 0, ,0 1
   
        respectively. Since OR(C0|2) = {1,0} and 

OR(C1|2) = {1,1}, we have P(OR(C0|t))  p0 = 1/2 and 
P(OR(C1|t))  p1 = 0. This satisfies condition (P-1); and the 
average contrast  = p0  p1 = 1/2. In addition, P(OR(C1|1)) = 
P(OR(C0|1)) = 1/2 satisfies condition (P-2). Shadows of (2, 2)-
PVCS are not expanded. However, the visual quality of a 
recovered image will be degraded. 

2. EVCS and PEVCS 

Noise-like shadows in DVCS (or PVCS) are unusual and 
susceptible to censors. In addition, the identification and 
management of noise-like shadows is difficult. Therefore, an 
EVCS (with its extended ability — “the meaningful shadow”) 
is accordingly proposed. This extended capability was first 
introduced by Naor and Shamir [2]. They used 3B1W (2B2W) 
to represent black (white) pixels in shadows, but used 4B0W 
(3B1W) in reconstructed images to represent black and white 
colors. With regards to the formal definition of EVCS, one 
should refer to [11]. 

Let S1 and S2 be two shadows of a (2, 2)-EVCS, and ci is the 
cover pixel on Si, where i = 1, 2. Suppose that 1 2 1 2

1 0( )c c c cB B  is 
a matrix for a black (white) secret pixel in a (2, 2)-EVCS. Then, 
the associated cover pixel is black (ci = 1) or white (ci = 0), 
where c1 and c2 denote the colors in S1 and S2, respectively. The 
following example shows Naor and Shamir’s (2, 2)-EVCS [2]. 
Example 2. Construct a (2, 2)-EVCS with m = 4. All eight 
basis matrices, 00 01 10 11 00 01 10 11

0 0 0 0 1 1 1 1, , , , , , , , and B B B B B B B B are 
given as follows: 

00 01 10 11
0 0 0 0

00 01 10 11
1 1 1 1

1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1, , , ,1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1

1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1, , , .0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0

                        

                        

B B B B

B B B B

 

(1) 

The contrast of the recovered image is given by  = (h  l)/m 
[= (1  0)/4 = 1/4]. Since the Hamming weight of the ith row  
(i =1, 2), is 2 and 3 for ci = 0 and ci = 1, respectively, the 
contrast of shadow s is also (2–1)/4 = 1/4.        

If two shadows in this (2, 2)-EVCS have the same cover 
image, then the colors of c1 and c2 are the same (that is, c1 = c2). 
Thus, we only require 00 00 11

0 1 0, , ,B B B  and 11
1B  from (1) for 

the (2, 2)-EVCS containing two shadows having the same 
cover image.  

Generally, EVCS has a larger pixel expansion than VCS. For 
example, let us assume that we have m = 2 for (2, 2)-DVCS, 
while m = 4 for (2, 2)-EVCS. As in the case of a DVCS, we 
can also apply a probabilistic approach (that is, choosing every 
column randomly each time) to EVCS to implement a PEVCS. 
Example 3. Continuation of Example 2. 

We use all four columns of the basis matrices featured in (1) 
to construct sets of 2  1 column matrices — 00 01 10

0 0 0, , ,C C C  
11 00 01 10
0 1 1 1, , ,C C C C  and 11

1 .C  Therefore, the sets of a (2, 2)-
PEVCS with two different cover images on shadows are 
shown as follows: 

       
 

00 01 10 11
0 0 0 0

00 01
1 1

1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1, , , ,1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1

1 0 0 1 1, 0 1 1 0 1

C C C C

C C

                                                                                                

                            10 11
1 1

0 0 1 1 0 1 1 1 0 1 1, , .1 1 0 1 1 0 0 1 1 1 0C C                                                                      

    (2) 

Since OR( 1 2
0
c cC | 2) = {1,0,1,1} and OR( 1 2

1
c cC | 2) = {1,1,1,1}, 

we have P(OR( 1 2
0
c cC | 2))  p0 = 1/4 and P(OR( 1 2

1
c cC | 2))  p1 

(= 0). So,  = p0 – p1 = 1/4. For a (2, 2)-PEVCS with 

shadows that have an identical cover image, there are only four 

sets — 00 11 00
0 0 1, , ,C C C  and 11

1 .C  

3. Hou and Others’ (2, n)-BPVCS 

In [7], Hou and others propose a (2, n)-BPVCS with non-
expanded shadow size. In Hou and others’ (2, n)-BPVCS, a 
secret image P is subdivided into n image blocks {P1, P2, … , 
Pn} that satisfy the following two properties: (a) any two image 
blocks do not have the same overlapping area; that is, 

i jP P   for i  j (disjoint property) and (b) their union is 
the original secret image P; that is, 1 2 nO P P P    (union 
property). The disjoint property provides the progressive 
recovery, and the union property ensures that all participants 
can work together to reconstruct the whole secret image. If 
participant i, 1  i  n, is involved in reconstruction, then the 
image block Pi can be recovered. When any t (2  t  n) 
shadows are stacked, all the image blocks corresponding to 
these t participants will be recovered, but other areas are still 
noise-like. Therefore, each participant has his own decryption 
key for one particular image block. Considering the example  



982   Ching-Nung Yang et al. ETRI Journal, Volume 37, Number 5, October 2015 
http://dx.doi.org/10.4218/etrij.15.0114.0327 

(2, 3)-BPVCS, the secret image is first subdivided into three 
image blocks — P1, P2, and P3. When two participants, p1 and 
p2, cooperate together, they can recover image blocks P1 and P2, 
and the other area is noise-like. However, when stacking 
shadows, (S1 + S3) or (S2 + S3), the image blocks P1 and P3, and 
P2 and P3 are recovered, respectively. All three stacked 
shadows can recover all image blocks, P1, P2, and P3. There are 
two types of Hou and others’ (2, n)-BPVCS — a (2, n)-
BPVCS with noise-like shadows and a (2, n)-BPVCS with 
meaningful shadows. In fact, Hou and others’ (2, n)-BPVCS 
with noise-like shadows and (2, n)-BPVCS with meaningful 
shadows are constructed by (2, 2)-PVCS (see Example 1) and 
(2, 2)-PEVCS with the same cover image (see Example 3), 
respectively. In Hou and others’ (2, n)-BPVCS with noise-like 
shadows, the dealer applies (2, 2)-PVCS on Pi, 1  i  n, to get 
noise-like sub-shadows Si,1 and Si,2. On the other hand, when 
constructing Hou and others’ (2, n)-BPVCS with meaningful 
shadows, we should additionally consider the cover image O. 
The cover image is partitioned into n subcover images to give 
Oi, 1  i  n, according to the position of image block Pi. Then, 
for each Pi and Oi, 1  i  n, we apply (2, 2)-PEVCS with   
the same cover image to obtain sub-shadows Si,1 and Si,2. The 
method of composition of shadows for these two (2, n)-
BPVCSs is the same. The dealer delivers Si,1 to participant i 
and Si,2 to the other (n – 1) participants. Afterwards, every 
participant offers up all of their received sub-shadows 
according to the position of Pi to construct n shadows as 
follows: 

,1 ,2
{1,..., },

j j i
i n i j

S S S
 

 
  

 
   (1  j  n).       (3) 

Since both a (2, 2)-PVCS and a (2, 2)-PEVCS have a non-
expanded shadow size, the shadow size of Hou and others’ (2, 
n)-BPVCS is also not expanded. As an example, Hou and 
others’ (2, 4)-BPVCS is constructed below. By (3), we have 
four shadows as given below in (4). Figures 1(a) and 1(b) are 
partitions of a secret image and partitions of a cover image, 
respectively. Figure 1(c) illustrates four shadows. 

1 1,1 2,2 3,2 4,2

2 1,2 2,1 3,2 4,2

3 1,2 2,2 3,1 4,2

4 1,2 2,2 3,2 4,1

,

,

,

.

S S S S S

S S S S S

S S S S S

S S S S S


 
 
 

  

  

  

  

           (4) 

Consider the stacked result of (S1 + S2). We have two image 
blocks, P1 and P2, and two noise-like blocks, S3,2 and S4,2, as 
shown in (5). By stacking another shadow S3 on (S1 + S2), we 
obtain three image blocks, P1, P2, and P3, and one noise-like 
block, S4,2, in (6). When stacking all four shadows, we can 

 

Fig. 1. Composition of shadows for Hou and others’ (2, 4)-
BPVCS: (a) four image blocks, (b) four subcover images, 
and (c) four shadows. 

P1 P2

P3 P4

(a) P 

O1 O2

O3 O4

(b) O 

S1,1 S2,2

S3,2 S4,2

(c-1) S1

S1,2 S2,1 

S3,2 S4,2 

(c-2) S2 

S1,2 S2,2

S3,1 S4,2

(c-3) S3 

S1,2 S2,2

S3,2 S4,1

(c-4) S4

 
 

 

Fig. 2. Progressive recovery of Hou and others’ (2, 4)-BPVCS 
with noise-like shadows: (a) four shadows, (b) stacking 
any two shadows, (c) stacking any three shadows, and (d) 
stacking all four shadows. 

  
(a-1) S1 (a-2) S2 (a-3) S3 (a-4) S4 (b-1) S1+S2 

  
(b-2) S1+S3 (b-3) S1+S4 (b-4) S2+S3 (b-5) S2+S4 (b-6) S3+S4 

  
(c-1) S1+S2+S3 (c-2) S1+S2+S4 (c-3) S1+S3+S4 (c-4) S2+S3+S4 (d) S1+S2+S3+S4

 
 
recover all image blocks (see (7)). 

1 2 1,1 1,2 2,1 2,2 3,2 3,2 4,2 4,2

2 image blocks 2 noise-like blocks

1 2 3,2 4,2

( ) ( ) ( ) ( )

. (5)

S S S S S S S S S S

P P S S

     


 

  

 
  

 



1 2 3 1,1 1,2 1,2 2,2 2,1 2,2

3,2 3,2 3,1 4,2 4,2 4,2

3 image blocks 1 noise-like block

1 2 3 4,2

( ) ( )

( ) ( )

.

S S S S S S S S S

S S S S S S

P P P S

      
    


 



 


  

   (6) 

1 2 3 4 1,1 1,2 1,2 1,2 2,2 2,1 2,2 2,2

3,2 3,2 3,1 3,2 4,2 4,2 4,2 4,1

4 image blocks

1 2 3 4

( ) ( )

( ) ( )

. (7)

S S S S S S S S S S S S

S S S S S S S S

P P P P

         
      


 



 


  

 

Example 4. Construct Hou and others’ (2, 4)-BPVCS with 
noise-like shadows. 

Suppose that a secret image is divided into four image blocks, 
as in Fig. 1(a). Then, the contents of P1, P2, P3, and P4 are the 

printed-texts A, B, C, and D, respectively; that is, P is A B
C D

. 

By applying a (2, 2)-PVCS with C1 = 1 0,0 1
   
      

 and      

C0 = 1 0,1 0
   
      

 to P1, P2, P3, and P4, we obtain sub-shadows 
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on which Hou and others’ (2, 4)-BPVCS can be implemented. 
Four noise-like shadows and the progressive recovery results 
of stacking two, three, and four shadows are given in Fig. 2. 

For example, when stacking S1 and S3, we have S1 + S3 =
A
C

 

(see Fig. 2(b-2)). By adding another shadow, S4, we have S1 + 

S3 + S4 =
A
C D

 (see Fig. 2(c-3)). Obviously, we can implement 

Hou and others’ (2, 4)-BPVCS with the same cover image by 
using a (2, 2)-PEVCS. 

III. Proposed (k, n)-BPVCS 

A secret image P is first divided into N image blocks {P1, P2, 
… , PN} satisfying both the aforementioned disjoint property 
and union property. For each Pj, 1  j  N, we use (k, k)-PVCS 
to generate k sub-shadows, Si,1, Si,2, … , Si,k. In this paper, we 
will show how to construct n shadows from these (N  k) sub-
shadows. Moreover, both constructions use different image 
blocks (Construction 1: N = nCk–1 and Construction 2: N = nCk) 
and have different progressive recovery ratios. One can choose 
a construction method according to his application need. Two 
construction methods are introduced in sequence. Some 
notations are defined in Table 1. 

The design concept of Construction 1 is described as follows. 
We use a matrix having nCk1 columns with (k  1) 1s in every 
column. Meantime, we generate k shadows from (k, k)-PVCS. 
From these k shadows, for every single column, we choose one  

 

Table 1. Notations used in proposed (k, n)-BPVCS. 

Notation Description 

D() 
Function dividing an image into N = nCk1 image blocks in 
Construction 1 and N = nCk image blocks in Construction 2
satisfies disjoint property and union property. 

Pj 
Divide a secret image into N image blocks Pj, 1  j  N, 
where D(P) = {P1, P2, … , PN}. 

Oj 
Divide a cover image into N subcover images Oj, 1  j  N, 
where D(O) = {O1, O2, … , ON}. 

PVCSk,k() Encoding function of (k, k)-PVCS. 

PEVCSk,k(,) Encoding function of (k, k)-PEVCS. 

Sj,1, … , Sj,k 
k sub-shadows of an image block Pj by using PVCSk,k() or
PEVCSk,k(,). 

, 1n kB   
n  nCk1 binary matrix Bn,k–1= [bij] used in Construction 1,
where bij[0, 1], 1  i  n and 1  j   nCk1, and every 
column vector has Hamming weight (k  1). 

,n kB  
n  nCk binary matrix , [ ]n k ijB b  used in Construction 2, 

where bij[0, 1], 1  i  n and 1  j  nCk, and every column 

vector has Hamming weight k. 

Si n shadows, 1  i  n, in the proposed (k, n)-BPVCS 

 

shadow for all 0s and (k  1) shadows for (k  1) 1s. Therefore, 
when stacking t shadows, some corresponding image blocks 
can be revealed. The formal construction is shown in 
Construction 1. 
 

Construction 1. Encoding of the proposed (k, n)-BPVCS. 

Input: a secret image P. 

Output: n shadows Si, i[1, n]. 

(Step 1-1) Obtain image blocks Pj, j[1, N], by D(P), where N = nCk–1.

(Step 1-2) Obtain subcover images Oj, j[1, N], where N = nCk–1. 

/* (Step 1-2) is only required for the proposed (k, n)-BPVCS with 

meaningful shadows */ 

(Step 2-1) For every image block Pj, create k sub-shadows 

( ,1 ,, ... ,  j j kS S ) by PVCSk,k(Pj). 

(Step 2-2) For every image block Pj and sub cover image Oj, create k 

sub-shadows ( ,1 ,, ... ,  j j kS S ) by PEVCSk,k(Pj,Oj). 

/* (Step 2-2) is only required for the proposed (k, n)-BPVCS with 

meaningful shadows */ 

(Step 3) Set S1 = S2 =  Sn = . 

(Step 4) Choose a matrix Bn,k–1 = [bij]. 

(Step 5) for j = 1 to N do 

 {Set x = 2; 

  for i = 1 to n do{If bij = 1 then , ,
ˆ

i j j xS S  and x = x + 1; else 

, ,1
ˆ

i j jS S ;} 

  }; 

(Step 6) 1 ,
ˆ , [1, ]N

i j i jS S i n Υ . 

/* each participant puts up received ,
ˆ

i jS  according to the position 

of Pj to construct Si */ 

1. Construction 1: (k, n)-BPVCS Using nCk–1 Image Blocks 

The encoding procedure of the proposed (k, n)-BPVCS with 
noise-like and meaningful shadows by nCk–1 image is shown 
below. (Step 1-1) and (Step 2-1) (respectively, (Step 1-2) and 
(Step 2-2)) are used for noise-like (respectively, meaningful) 
shadows.  
Theorem 1. The scheme from Construction 1 is a (k, n)-
BPVCS having both the progressive recovery and threshold 
property. 
Proof. We first prove the security condition (that is, the 
threshold property), in which t (t 	 k	 –	 1) shadows cannot 
recover any image block. Any t (t  k – 1) rows in Bn,k–1 do not 
have (k – 1) 1s and at least one 0 in a column; so, there are not 
enough k sub-shadows in a (k, k)-PVCS (or (k, k)-PEVCS) to 
reconstruct any image block. With regards to progressive 
recovery, every column vector has (k – 1) 1s and (n – k + 1) 0s. 
So, any t (t  k) rows in Bn,k–1 have t Ck–1 t-tuples with (k – 1)  
1s and (t – k + 1) 0s, and have enough k sub-shadows for 
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reconstructing tCk–1 image blocks. For k = 2, the number of 
image blocks is N = n Ck–1 = n C1 = n. Shadows obtained from 
Construction 1 are exactly the same as those in (3), and 
Construction 1 will be reduced to Hou and others’ (2, n)-
BPVCS. The following example shows a (3, 4)-BPVCS where 
k > 2 by using Construction 1.                        ■ 

Example 5. Generate four shadows of the proposed (3, 4)-

BPVCS by Construction 1. 

A secret image P is first partitioned into 6 = 4C2 image blocks, 

P1, P2, … , P6. Each image block is divided into three sub-

shadows by (3, 3)-PVCS (or (3, 3)-PEVCS). The matrices  

Bn,k–1 = B4,2 and  ,
ˆ

i j
S  of a (3, 4)-BPVCS are given as 

follows: 

4,2

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 54 45 46

1 1 1 0 0 0
1 0 0 1 1 0 .
0 1 0 1 0 1
0 0 1 0 1 1

b b b b b b
b b b b b bB
b b b b b b
b b b b b b

 
   
   
   

  
    (8)             

,

1,1 1,2 1,3 1,4 1,5 1,6 1,2 2,2 3,2 4,1 5,1 6,1

2,1 2,2 2,3 2,4 2,5 2,6 1,3 2,1 3,1 4,2 5,2 6,1

1,1 2,33,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

i jS

S S S S S S S S S S S S
S S S S S S S S S S S S

S S SS S S S S S
S S S S S S

  
 
 
  
 
 
 



3,1 4,3 5,1 6,2

1,1 2,1 3,3 4,1 5,3 6,3

.S S S
S S S S S S

 
 
 
 
 

 (9)       

Four shadows, S1, S2, S3, and S4, are then generated by 
 6

,1
ˆ ,  [1,  4].i i jj

S S i


   

1 1,1 1,2 1,3 1,4 1,5 1,6 1,2 2,2 3,2 4,1 5,1 6,1

2 2,1 2,2 2,3 2,4 2,5 2,6 1,3 2,1 3,1 4,2 5,2 6,1

3 3,1 3,2 3,3 3,4 3,5 3,6 1,1 2,3 3,1 4,3 5,

ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ

S S S S S S S S S S S S S

S S S S S S S S S S S S S

S S S S S S S S S S S S

 

 

 

         

         

         1 6,2

4 4,1 4,2 4,3 4,4 4,5 4,6 1,1 2,1 3,3 4,1 5,3 6,3

,

ˆ ˆ ˆ ˆ ˆ ˆ .

S

S S S S S S S S S S S S S








 



         

(10) 

1 2

1,2 2,2 3,2 4,1 5,1 6,1 1,3 2,1 3,1 4,2 5,2 6,1

6 noise-like blocks

1,2 1,3 2,2 2,1 3,2 3,1 4,1 4,2 5,1 5,2 6,1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

S S

S S S S S S S S S S S S

S S S S S S S S S S S


 


     

         


    

(11) 

1 3 4 1,2 2,2 3,2 4,1 5,1 6,1

1,1 2,3 3,1 4,3 5,1 6,2 1,1 2,1 3,3 4,1 5,3 6,3

1,2 1,1 2,2 2,3 2,1

3,2 3,1 3,3 4,1 4,3 5,1 5,3 6,1 6,2 6,3

2 3 6

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

S S S S S S S S S

S S S S S S S S S S S S

S S S S S

S S S S S S S S S S

P P P

  

 

   

     



    

         



   

 

3 image blocks 3 noise-like blocks

1,2 1,1 4,1 4,3 5,1 5,3( ) ( ) ( ). (12)S S S S S S










  
 

  

 

Figures 3(a) and 3(b) are partitions of the secret image and 

cover image. Figure 3(c) shows the composition of shadows 

for the proposed (3, 4)-BPVCS by Construction 1.  

 

Fig. 3. Composition of shadows for proposed (3, 4)-BPVCS: (a) 
six image blocks, (b) six sub-cover images, and (c) four 
shadows.

P1

(a) P (b) O 

S1,2

(c-1) S1 (c-2) S2 (c-3) S3 (c-4) S4

P2 P3

P4 P5 P6

O1 O2 O3

O4 O5 O6

S2,2 S3,2

S4,1 S5,1 S6,1

S1,3 S2,1 S3,1 

S4,2 S5,2 S6,1 

S1,1 S2,3 S3,1

S4,3 S5,1 S6,2

S1,1 S2,1 S3,3

S4,1 S5,3 S6,3

 
 

1 2 3 4 1,2 2,2 3,2 4,1 5,1 6,1

1,3 2,1 3,1 4,2 5,2 6,1 1,1 2,3 3,1 4,3 5,1 6,2

1,1 2,1 3,3 4,1 5,3 6,3

1,2 1,3 1,1 1,1 2,2 2,1 2,3 2,1 3,2 3,1 3,1

( )

( ) ( )

( )

( ) ( ) (

S S S S S S S S S S

S S S S S S S S S S S S

S S S S S S

S S S S S S S S S S S

   

 



         

    

         

    

  3,3

4,1 4,2 4,3 4,1 5,1 5,2 5,1 5,3 6,1 6,1 6,2 6,3

6 image blocks

1 2 3 4 5 6

)

( ) ( ) ( )

. (13)

S

S S S S S S S S S S S S

P P P P P P









        




  


    

  Let us consider a reconstruction. It can be easily verified that 
any two shadows do not have enough sub-shadows for 
reconstructing an image block. For example, when stacking S1 
and S2, we have six noise-like image blocks (see (11)). As 
shown in (12), by stacking S1, S3, and S4, we can recover three 
image blocks, P2, P3, and P6, and three noise-like blocks. All 
four stacked shadows can recover all image blocks (see (13)). 

2. Construction 2: (k, n)-BPVCS Using nCk Image Blocks 

The design concept of Construction 2 is described as 
follows. We use a matrix having nCk columns with k 1s in 
every column. Meantime, we generate k shadows from (k, k)-
PVCS. For every single column, we assign these k shadows 
to k 1s, and generate one random shadow for “0.” Therefore, 
when stacking t shadows, some corresponding image blocks 
can be revealed. The formal construction is shown in 
Construction 2. 

The encoding procedure of Construction 2 is similar to  
Construction 1, except using N = nCk instead of N = nCk–1, and 
Bn,k instead of Bn,k–1. Also, (Step 5) in Construction 1 is 
modified as (Step 5) in Construction 2 (see Fig. 4). 

Random sub-shadows Sj,0 in Construction 2, 1  j  N, are 
randomly generated in the (k, n)-BPVCS with noise-like 
shadows. For the (k, n)-BPVCS with meaningful shadows, 
meaningful sub-shadows Sj,0 1  j  N, are generated according 
to Pj and Oj, where the subpixels for black and white pixels are 
the same as those in (k, k)-PEVCS. For the case k = 3 in the 
proposed (k, n)-BPVCS, we need (3, 3)-PVCS and (3, 3)-
PEVCS. Suppose that we use Naor and Shamir’s (3, 3)-PVCS 
[2] and Liu and others’ (3, 3)-PEVCS [12] to implement our (3, 
4)-BPVCS with noise-like and meaningful shadows, 
respectively. Since Naor and Shamir’s (3, 3)-PVCS uses 
shadows that contain an equal number of black and white 
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Fig. 4. Modified (Step 5) in Construction 2. 

(Step 5) for j = 1 to N do 

         {Set x = 1; 

            for i = 1 to n do { 

               if bij = 1 then , ,
ˆ

i j j xS S  and x = x + 1;  

               else ,
ˆ

i jS = Sj,0 }; 

         } 

 
 
pixels, Sj,0 in the (3, n)-BPVCS with noise-like shadows is 
randomly generated. On the other hand, Liu and others’ (3, 3)-
PEVCS adopts probabilities 5/9 and 4/9 of blackness to 
represent black and white secret pixels. Therefore, the black 
and white pixels of Sj,0 for (3, n)-BPVCS with meaningful 
shadows are generated according to the above probabilities; so, 
we can visually view the cover image on shadow. However, 
the sub-shadow Sj,0 is not related to other sub-shadows, Sj,1, Sj,2, 
… , Sj,k; thus, it does not have any contribution for 
reconstruction. 
Theorem 2. The scheme from Construction 2 is a (k, n)-
BPVCS having both the progressive recovery and threshold 
property. 
Proof. We put k sub-shadows of Pj at the element of “1” in the 
jth column. Since t (t  k – 1) rows in Bn,k do not have k 1s, 
there are not enough k sub-shadows in a (k, k)-PVCS (or (k, k)-
PEVCS) to reconstruct any image block. For the progressive 
recovery, we only consider the sub-shadows in position “1” 
because the sub-shadow Sj,0 in position “0” has no contribution 
for reconstruction. Every column vector has k 1s and (n  k) 0s. 
So, any t (t  k) rows in Bn,k have t Ck t-tuples with k 1s, and have 
enough sub-shadows for reconstructing t Ck image blocks.   ■ 
Example 6. Generate four shadows of the proposed (3, 4)-
BPVCS by Construction 2. 

A secret image P is first partitioned into 4 = 4 C3 image blocs, 
P1, P2, P3, and P4. Each image block is shared into three sub-
shadows by (3, 3)-PVCS (or (3, 3)-PEVCS). Also, we generate 

four random and meaningful sub-shadows, S1,0, S2,0, S3,0, and 

S4,0, for the (3, 4)-BPVCS with noise-like and meaningful 

shadows, respectively. The matrices Bn,k = B4,3 and  ,
ˆ

i j
S  of 

a (3, 4)-BPVCS are shown as follows: 

4,3

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 54

1 1 1 0
1 1 0 1 ,
1 0 1 1
0 1 1 1

b b b b
b b b bB
b b b b
b b b b

  
   
   
   

  
       (14)                     

 
1,1 1,2 1,3 1,4 1,1 2,1 3,1 4,0

2,1 2,2 2,3 2,4 1,2 2,2 3,0 4,1

,
1,3 2,0 3,2 4,23,1 3,2 3,3 3,4

1,0 2,3 3,3 4,34,1 4,2 4,3 4,4

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ .ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

i j

S S S S S S S S
S S S S S S S S

S
S S S SS S S S
S S S SS S S S

 

   
   
   
     

  (15) 

Four shadows, S1, S2, S3, S4, are then generated by 

 

Fig. 5. Composition of shadows for proposed (3, 4)-BPVCS. 

S1,1 S2,1

S3,1 S4,0

S1,2 S2,2

S3,0 S4,1

S1,3 S2,0 

S3,2 S4,2 

S1,0 S2,3

S3,3 S4,3

(a) S1 (b) S2 (c) S3 (d) S4

 
 

 4

,1
ˆ ,  [1,  4].i i jj

S S i


   

1 1,1 1,2 1,3 1,4 1,1 2,1 3,1 4,0

2 2,1 2,2 2,3 2,4 1,2 2,2 3,0 4,1

3 3,1 3,2 3,3 3,4 1,3 2,0 3,2 4,2

4 4,1 4,2 4,3 4,4 1,0 2,3 3,3 4,3

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ .

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

  

  


 


 

     

     

     

     

 (16)          

By using partitions of both the secret and cover images in 

Figs. 3(a) and 3(b), the composition of shadows for the 

proposed (3, 4)-BPVCS by Construction 2 is shown in Fig. 5. 

Let us consider a reconstruction. When stacking two 

shadows, S1 and S2, we have four noise-like image blocks (see 

(17)). As shown in (18), when stacking S1, S3, and S4, we will 

have one image block, P3, and three noise-like blocks since S1,0, 

S2,0, and S4,0 are unrelated in the reconstruction; thus, we have 

nothing when stacking (S1,1 + S1,3 + S1,0), (S2,1 + S2,0 +S2,3), (S3,1 

+ S3,2 + S3,3), and (S4,0 + S4,2 + S4,3).  

1 2 1,1 2,1 3,1 4,0 1,2 2,2 3,0 4,1

4 noise-like blocks

1,1 1,2 2,1 2,2 3,1 3,0 4,0 4,1

( ) ( )
,

( ) ( ) ( ) ( )

S S S S S S S S S S

S S S S S S S S

  


    

     


  

(17) 



1 3 4 1,1 2,1 3,1 4,0 1,3 2,0 3,2 4,2

1,0 2,3 3,3 4,3

1,1 1,3 1,0 2,1 2,0 2,3 3,1 3,2 3,3

4,0 4,2 4,3

1 image block

3 1,1 1,3 1,0 2,1 2,0 2,3 4,0

( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) (

S S S S S S S S S S S

S S S S

S S S S S S S S S

S S S

P S S S S S S S S

   



      

 

     

     

  

 



  

3 noise-like blocks

4,2 4,3).S













                                          (18) 

Obviously, we can recover all image blocks when stacking all 

shadows (see (19)). 

1 2 3 4 1,1 2,1 3,1 4,0 1,2 2,2 3,0 4,1

1,3 2,0 3,2 4,2 1,0 2,3 3,3 4,3

1,1 1,2 1,3 1,0 2,1 2,2 2,0 2,3

3,1 3,0 3,2 3,3 4,0 4,1 4,2 4,3

4

1 2 3 4

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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 image blocks
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3. Image Blocks in (k, n)-BPVCS 

With regards to the recovered image blocks, in Hou and 

others’ (2, n)-BPVCS, each participant has his own decryption 

key for one particular image block; for example, t participants 

(say p1, p2, … , pt) can stack their shadows to recover the image 

blocks (P1, P2, … , Pt). So, every participant has his own image 

block. We have n participants; thus, there are n image blocks. 

In Construction 1, there are nCk–1 image blocks. There are 4C2 = 

6 image blocks for our (3, 4)-BPVCS. Here, we rename these 

six image blocks P1, P2, … , P6, as P1,2, P1,3, P1,4, P2,3, P2,4, and 

P3,4, respectively. As shown in (20), for P1,4 (see the third 

column), there are two 1s elements — one in the first row and 

the other in the fourth row. 

     

1

4,2 2

3

4

1,2 1,3 1,4 2,3 2,4 3,4

1 1 1 0 0 0
. 1  0  0  1  1  0

 0  1  0  1  0  1

 0  0  1  0  1  1

P P P P P P

p
B p

p

p


 




 
 
 
 
 
 

      (20) 

In Construction 1, we use the same sub-shadow Sj,1 for “0.” 

Therefore, the shadows S1 and S4 for each of the “1” elements 

are necessary in reconstructing the image block P1,4. This 

implies that the involved three participants need p1 and p4 to 

recover P1,4. Therefore, p1 and p4 have their own decryption 

key for the particular image block P1,4. In Construction 1, we 

have nCk–1 image blocks 
1 2 1, ,..., ,

kj j jP


where ji{1, 2, … , n} 

and i = 1, 2, … , k  1. When t participants (say p1, p2, … , pt) 

are involved in reconstruction, then tCk–1 image blocks, 

1 2 1, ,..., ,
kj j jP


 where {1, 2, ... , }ij t  and i = 1, 2, … , k – 1, 

associated with these t participants can be recovered. For 

example, in a (3, 4)-BPVCS by Construction 1, S1, S3, and S4 

can be stacked to recover P1,3, P1,4, and P3,4. On the other hand, 

in a (3, 4)-BPVCS by Construction 2, there are 4C3 = 4 image 

blocks. Here, we rename the four image bocks, P1, P2, P3, and 

P4, as P1,2,3, P1,2,4, P1,3,4, and P2,3,4, respectively.  
Let us consider the first column in (21), we use sub-shadows 

S1,1, S1,2, and S1,3 for the element “1”; thus, the participants p1, p2, 
and p3 are necessary in reconstructing the image block P1,2,3. 
Thus, we can say they have their own decryption key for the 
particular image block P1,2,3. 

From the above description, t participants in both 

constructions have their own decryption keys for tCk–1 

(Construction 1) or tCk (Construction 2) particular image blocks. 

The proposed (k, n)-BPVCS has a similar progressive recovery 

to that of Hou and others’ (2, n)-BPVCS. In fact, Construction 

1 is reduced to Hou and others’ (2, n)-BPVCS for k = 2.  

   

1

4,3 2

3

4

1,2,3 1,2,4 1,3,4 2,3,4

1 1 1 0

.  1   1   0   1

  1   0   1   1

  0   1   1   1

P P P P

p
B p

p

p


  




 
 
 
 
 
 

        (21)          

IV. Experiment and Discussion 

1. Experimental Results 

There are two types of Hou and others’ (2, n)-BPVCS — 
one containing noise-like shadows and one containing 
meaningful shadows. Construction 1 and Construction 2 can 
also be implemented with noise-like and meaningful shadows. 
The difference is that one uses (k, k)-PVCS and the other uses 
(k, k)-PEVCS with the same cover image. Here, we conduct 
two experiments to evaluate the performance of the proposed 
(k, n)-BPVCS with noise-like shadows by Construction 1 and 
Construction 2.  
Experiment A. Construct the proposed (3, 4)-BPVCS with 
noise-like shadows by Construction 1. 

Here, we use (3, 3)-PVCS with 1

1 0 0 1
0 , 1 , 0 , 1
0 0 1 1

C
                 
        

 

and 0

0 0 1 1
0 , 1 , 0 , 1
0 1 1 0

C
                 
        

. Suppose that the secret image is 

P = A BC
D E F , and that this is divided into six image blocks P1 

= A , P2 = B , P3 = C , P4 = D , P5 = E , and P6 = F .  

Figure 6 reveals four noise-like shadows and the results of 
stacking two, three, and four shadows. Obviously, we have six 
noise-like image blocks, and we do not have any secret  

 

Fig. 6. Progressive recovery of (3, 4)-BPVCS with noise-like 
shadows by Construction 1: (a) four shadows, (b) 
stacking any two shadows, (c) stacking any three 
shadows, and (d) stacking all four shadows. 

  
(a-1) S1 (a-2) S2 (a-3) S3 (a-4) S4 (b-1) S1+S2 

  
(b-2) S1+S3 (b-3) S1+S4 (b-4) S2+S3 (b-5) S2+S4 (b-6) S3+S4 

  
(c-1) S1+S2+S3 (c-2) S1+S2+S4 (c-3) S1+S3+S4 (c-4) S2+S3+S4 (d) S1+S2+S3+S4
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information for stacking any two shadows. However, in    
Fig. 6(b), it is observed that there is one noise-like image block 
lighter than the other five noise-like image blocks when 
stacking two shadows. When stacking S1 and S2, the area of P6 
only has one sub-shadow, S6,1 (see (11)); however, the other 
five areas have two stacked sub-shadows. Therefore, the area 
of P6 is lighter than the other areas. When stacking any three 
shadows, we can recover 3C2 = 3 image blocks. For example, 
when stacking S1, S3, and S4 (see (12)), we will have three 
image blocks, P2, P3, and P6, and three noise-like blocks. The 
stacked result of (S1 + S3 + S4) with the contrast 1 / 4   is 
illustrated in Fig. 6(c-3). As shown in Fig. 6(d), the complete  

secret A BC
D E F  is recovered for stacking all four shadows, and 

the contrast is still 1/4. 
Experiment B. Construct the proposed (3, 4)-BPVCS with 
noise-like shadows by Construction 2. 

We use the (3, 3)-PVCS in Experiment A. Construction 2 
only needs four image blocks. Suppose that the secret image is 

P = M A B
C D , and that this is divided into four image blocks P1 

= A , P2 = B , P3 = C , and P4 = D . 

Figure 7 reveals four noise-like shadows and the stacked 
results of stacking two, three, and four shadows. Any two 
stacked shadows have two stacked sub-shadows in each 
image-block area; thus, we have nothing. When stacking any 
three shadows, we can recover 3C3 = 1 image block. For 
example, when stacking S1, S3, and S4 (see (18)), we have one 
image block, P3, and three noise-like blocks. The stacked result 
of (S1 + S3 + S4) is illustrated in Fig. 7(c-3). The contrast for this  

image block is  = (1 – 0)/4 = 1/4. The complete secret A B
C D  

 

Fig. 7. Progressive recovery of (3, 4)-BPVCS with noise-like 
shadows by Construction 2: (a) four shadows, (b) 
stacking any two shadows, (c) stacking any three 
shadows, and (d) stacking all four shadows. 

    
(a-1) S1 (a-2) S2 (a-3) S3 (a-4) S4 (b-1) S1+S2

    
(b-2) S1+S3 (b-3) S1+S4 (b-4) S2+S3 (b-5) S2+S4 (b-6) S3+S4

    
(c-1) S1+S2+S3 (c-2) S1+S2+S4 (c-3) S1+S3+S4 (c-4) S2+S3+S4 (d) S1+S2+S3+S4

 

is recovered for four stacked shadows (see Fig. 7(d)), and the 
contrast is reduced to 1/8 due to stacking an extra random sub-
shadow, Sj,0. 

2. Comparison and Discussion 

Hou and others’ scheme is a simple 2-out-of-n BPVCS. Both 
our constructions can be applied to any k and n. Hou and 
others’ scheme uses n image blocks, but Construction 1 and 
Construction 2 use nCk–1 and nCk image blocks, respectively.  

Although the three schemes have different numbers of image 
blocks, any t ( k) participants in all these three schemes have 
their own decryption keys for the particular image blocks. In 
fact, nCk–1 image blocks in Construction 1 is reduced to nC2–1 = 
n in Hou and others’ (2, n)-BPVCS. When stacking k shadows, 
all three schemes have the same contrast to that of (k, k)-PVCS 
(note: k is 2 in Hou and others’ scheme). 

When stacking (k + 1) or more shadows, the contrasts of 
Hou and others’ scheme and Construction 1 are invariant. 
However, the contrast of Construction 2 is compromised due to 
an extra sub-shadow, Sj,0. Next, we discuss the following issues 
of the proposed (k, n)-BPVCS in detail: (a) non-uniform 
stacked results, (b) reconstruction of image blocks, (c) 
progressive recovery ratio, and (d) requirement of Sj,0 in 
Construction 2. 

A. Non-uniform Stacked Results 

Form our experimental results, it is observed that 
Construction 1 has the non-uniform stacked results when 
stacking t shadows, where 2  t  k  1. Since Construction 1 is 
based on the matrix Bn,k–1, where every column has (k  1) 1s, 
the stacked result has tCr  n–tCk–1–t+r t-tuples with r 0s. We use 
the same sub-shadow Sj,1 at the element “0” in the jth column; 
thus, the color in the stacked result is lighter if this image block 
has r 0s, where r > 2. A (3, 4)-BPVCS by Construction 1 has 

2C0  4–2C3–1–2+0 = 1 2-tuples with zero 0s, 2C1 4–2C3–1–2+1 = 4  
2-tuples with one 0, and 2C2  4–2 C3–1–2+2 = 1 with two 0s, 
respectively. As shown in Fig. 6(b), there are five darker image 
blocks (r = 0 and 1) and one lighter image block (r = 2) when 
stacking t = 2 shadows. Construction 2 also has a similar 
characteristic, because we use the same sub-shadow Sj,0 at the 
element “0” in the jth column. Since every column of Bn,k has 
k 1s, so the stacked result has tCr  n–tCk–t+r t-tuples with r 0s. 
Therefore, when stacking two shadows, a (3, 4)-BPVCS by 
Construction 2 has 2C0 4–2C3–2+0 = 2 2-tuples with zero 0s and 

2C14–2C3–2+1 = 2 2-tuples with one 0, respectively. So, there are 
four darker image blocks (r = 0 and 1) but no lighter image 
block (see Fig. 7(b)). Our scheme extends Hou and others’ (2, 
n)-BPVCS to the BPVCS with k > 2 by using the same sub-
shadow for each “0” element in matrices Bn,k–1 and Bn,k. This 
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approach causes color darkening in some areas when stacking 
less than k shadows. Although our (k, n)-BPVCS may have 
non-uniform stacked results, it does not compromise the security. 

B. Reconstruction of Image Blocks 

In Construction 1, we have nCk–1 image blocks and n 
participants. Every participant has privilege to recover the 
particular n–1Ck–2 image blocks when they are involved in 
reconstruction. On the other hand, Construction 2 has nCk 
image blocks, and every participant has privilege to recover the 
particular n–1Ck–1 image blocks. For Construction 1 with k = 2 
(that is, Hou and others’ (2, n)-BPVCS), the number of image 
blocks, nC2–1 = n, happens to equal the number of participants. 
For this case, each participant pi can be assigned for recovering 

n–1C2–2 = 1 image block Pi, and it is easy to understand the 
statement [14] about Hou and others’ (2, n)-BPVCS, “Each 
participant has his/her own decryption key for one particular 
image block.” Suppose that four image blocks of (2, 4)-
BPVCS using Construction 1 (that is, Hou and others’ (2, 4)-
BPVCS) are P1, P2, P3, and P4. Two participants, pi and pj, can 
recover two image blocks, Pi and Pj. In this reconstruction, the 
participant pi is necessary for recovering the image block Pi. 
Each participant is required for their image block. For another 
(2, 4)-BPVCS by Construction 2, suppose that six image 
blocks are P1,2, P1,3, P1,4, P2,3, P2,4, and P3,4. When participant p1 
cooperates with another participant, p2, p3, or p4, respectively, 
they can recover P1,2, P1,3, or P1,4. So, every participant has 
privilege to recover 4–1C2–1 = 3 particular image blocks. Thus, 
each participant in Construction 2 also has his own decryption 
key for particular image blocks. 

C. Progressive Recovery Ratio 

Here, we define the progressive recovery ratio as the number 
of recovered image blocks over the number of whole image 
blocks when stacking t shadows, where k  t  n. The 
progressive recovery ratios of Hou and others’ (2, n)-BPVCS, 
Construction 1, and Construction 2 are RH = t/n, R1 = tCk–1/nCk–1, 
and R2 = t Ck/nCk, respectively. It can be easily verified that the 
difference of RH, R1, and R2 between stacking t and (t – 1) 
shadows is RH = 1/n, R1 = [(k – 1)  t–1Ck–1]/[(t + 1 – k)  nCk–1], 
and R2 = [k  t–1Ck]/[(t – k)  nCk]. Hou and others’ scheme RH = 
1/n is fixed, so its progressive recovery ratio is linear and 
smooth. For the case k << n, the variation of t–1Ck is greater 
than t–1Ck–1, so R1 is more uniform than R2. Figure 8 reveals the 
progressive recovery ratios for (2, 30)-BPVCS and (3, 30)-
BPVCS. 

D. Requirement of Sj,0 in Construction 2 

In Construction 2, we use a random Sj,0 for each element “0”  

 

Fig. 8. Progressive recovery ratios, k  t  n, of proposed (k, n)-
BPVCS by Construction 1 and Construction 2: (a) (2, 
30)-BPVCS and (b) (3, 30)-BPVCS. 

(a) (b) 

 
 

 

Fig. 9. Four shadows of (3, 4)-BPVCS by Construction 2 with 
noise-like shadows. 

 
(a-1) S1 (a-2) S2 (a-3) S3 (a-4) S4 

 
 
in Bn,k. This sub-shadow is completely unrelated to other  
sub-shadows. It has no contribution for recovering the secret 
but only degrades the contrast. However, it has k 1s in every 
column in Bn,k, where we use k sub-shadows from (k, k)-PVCS 
(or (k, k)-PEVCS). Actually, we do not need a sub-shadow for 
the “0” elements. Consider (3, 4)-BPVCS by Construction 2. If 
we do not use a random sub-shadow, S1,0, S2,0, S3,0 and S4,0, then 
(15) will be modified as (22). 

 
1,1 1,2 1,3 1,4 1,1 2,1 3,1

2,1 2,2 2,3 2,4 1,2 2,2 4,1

,
1,3 3,2 4,23,1 3,2 3,3 3,4

2,3 3,3 4,34,1 4,2 4,3 4,4

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ .ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

i j

S S S S S S S
S S S S S S S

S
S S SS S S S

S S SS S S S







 

   
   
   
     

    (22) 

Four shadows, S1, S2, S3, and S4, are then generated in (23), and 
each shadow only has three sub-shadows. For example, S1 = 
S1,1  S2,1  S3,1; there is no sub-shadow at the position of 
image block P4.  

1 1,1 1,2 1,3 1,4 1,1 2,1 3,1

2 2,1 2,2 2,3 2,4 1,2 2,2 4,1

3 3,1 3,2 3,3 3,4 1,3 3,2 4,2

4 4,1 4,2 4,3 4,4 2,3 3,3 4,3

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ .

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

  

  


 


 

    

    

    

    

    (23)  

In Fig. 9, four shadows generated from (23) look so odd 
without using the sub-shadow Sj,0. This is why we use Sj,0 in 
Construction 2. 

V. Conclusion 

In this paper we provided two constructions for a general    
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(k, n)-BPVCS. Also, we theoretically proved that the proposed 
(k, n)-BPVCS satisfies the threshold property and progressive 
recovery. For the special case k = 2, Construction 1 is reduced 
to Hou and others’ (2, n)-BPVCS. Both constructions using 
different image blocks have different progressive recovery 
ratios.  
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