• Title/Summary/Keyword: Shade Material

Search Result 115, Processing Time 0.026 seconds

COLOR DIFFERENCES BETWEEN RESIN COMPOSITES BEFORE- AND AFTER-POLYMERIZATION, AND SHADE GUIDES (복합레진의 광중합 전·후와 shade guide의 색차 비교)

  • Chon, Yi-Ju;Cho, Sung-Shik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.299-309
    • /
    • 1999
  • The composite resin, due to its esthetic qualities, is considered the material of choice for restoration of anterior teeth. With respect to shade control, the direct-placement resin composites offer some distinct advantages over indirect restorative procedures. Visible-light-cured (VLC) composites allow dentists to match existing tooth shades or to create new shades and to evaluate them immediately at the time of restoration placement. Optimal intraoral color control can be achieved if optical changes occurring during application are minimized. An ideal VLC composite, then, would be one which is optically stable throughout the polymerization process. The shade guides of the resin composites are generally made of plastic, rather than the actual composite material, and do not accurately depict the true shade, translucency, or opacity of the resin composite after polymerization. So the numerous problems associated with these shade guides lead to varied and sometimes unpredictable results. The aim of this study was to assess the color changes of current resin composite restorative materials which occur as a result of the polymerization process and to compare the color differences between the shade guides provided with the products and the actual resin composites before- and after-polymerization. The results obtained from this investigation should provide the clinician with information which may aid in improved color match of esthetic restoration. Five light activated, resin-based materials (${\AE}$litefil, Amelogen Universal, Spectrum TPH VeridonFil-Photo, and Z100) and shade guides were used in this study. Three specimens of each material and shade combination were made. Each material was condensed inside a 1.5mm thick metal mold with 10mm diameter and pressed between glass plates. Each material was measured immediately before polymerization, and polymerized with Curing Light XL 3000 (3M Dental products, USA) visible light-activation unit for 60 seconds at each side. The specimens were then polished sequentially on wet sandpaper. Shade guides were ground with polishing stones and rubber points (Shofu) to a thickness of approximately 1.5mm. Color characteristics were performed with a spectrophotometer (CM-3500d, Minolta Co., LTD). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$ and $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E{^*}ab$) of resin composites before the polymerization process and shade guides using the post-polishing color of the composite as a control, CIE standard D65 was used as the light source. The results were as follows. 1. Each of the resin composites evaluated showed significant color changes during light-curing process. All the resin composites evaluated except all the tested shades of 2100 showed unacceptable level of color changes (${\Delta}E{^*}ab$ greater than 3.3) between pre-polymerization and post-polishing state. 2. Color differences between most of the resin composites tested and their corresponding shade guides were acceptable but those between C2 shade of ${\AE}$litefil and IE shade of Amelogen Universal and their respective shade guides exceeded what is acceptable. 3. Comparison of the mean ${\Delta}E{^*}ab$ values of materials revealed that Z100 showed the least overall color change between pre-polymerization and post-polishing state followed by ${\AE}$litefil, VeridonFil-Photo, Spectrum TPH, and Amelogen Universal in the order of increasing change and Amelogen Universal. Spectrum TPH, 2100, VeridonFil-Photo and ${\AE}$litefil for the color differences between actual resin and shade guide. 4. In the clinical environment, the shade guide is the better choice than the shade of the actual resin before polymerization when matching colors. But, it is recommended that custom shade guides be made from resin material itself for better color matching.

  • PDF

A Spectrophotometric Study on Color Differences between Various Light-Cured Composite Resins and Shade Guides (광중합형 복합레진과 shade guide의 색차에 관한 연구)

  • Lim, Kyung-Min;Lee, Min-Ho;Song, Kwang-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The composite resin, due to its esthetic quality, is considered the material of choice for restoration of anterior teeth. To get a satisfactory result in the composite resin restorations, it is necessary to choose right shade. At present, most of the commercial composite resins are based on the Vita Lumin shade guides or shade guides that are provided by their company, but color differences among them might be expected even using the same shade in various materials. This study is to measure color differences between various light-cured composite resins and shade guides and to provide the clinicians with information which may aid in improved color match of esthetic restoration. Four kinds of light-cured composite resins (Gradia Direct (GD), Z250 (Z250), Clearfil AP-X (AP-X), Esthet X (E X)) and shade guides with A2 and A3 shade were used. Three specimens of each material and one specimen of each shade guide were made. Each composite resin was filled into the Teflon mold (1.35 mm depth, 8 mm diameter), followed by compression, polymerization and polishing with wet sandpaper. Shade guides were grinded with polishing stones and rubber points to a thickness of approximately 1.35 mm. Color characteristics were performed with a spectrophotometer(color i5, GretagMacbeth, USA). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E^*ab$) between composite resins and shade guides. CIE standard D65 was used as the light source. The results were as follows : 1. Among the $L^*$, $a^*$, $b^*$ values of most of 4 kinds of composite resin specimens which are produced by same shade, there were significant differences(p<0.05). 2. Among all 4 kinds of composite resin specimens which are produced by same shade, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 3. Between most of composite resin specimens investigated and their corresponding shade guides, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 4. In the clinical environment, it is recommended that custom shade guides be made from resin material itself for better color matching. Shade guides supplied by manufacturers or Vita Lumin shade guide may not provide clinicians a accurate standard in matching color of composite resins, and there are perceptible color differences in most of products. Therefore, it is recommended that custom shade guides be made from resin material itself and used for better color matching.

Influences of luting cement shade on the color of various translucent monolithic zirconia and lithium disilicate ceramics for veneer restorations

  • Ghada Alrabeah;Nawaf Alamro;Atif Alghamdi;Ahmed Almslam;Meshari Azaaqi
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.238-247
    • /
    • 2023
  • PURPOSE. The purpose of this study was to assess the effect of resin cement shade on the color of different novel ultratranslucent monolithic zirconia and lithium disilicate veneer materials. MATERIALS AND METHODS. For a total of 40 specimens, flat cylindrical discs with a 9-mm diameter and 0.5-mm thickness were created using CAD/CAM technology. The specimens were divided into five groups according to their material (n = 8) (e.max, Prettau, Aidite, Shofu and Dima) using A1 shade. Resin discs with the same diameter and shade as the specimens served as tooth-colored substructures. Three shades (neutral, light and warm) of resin cement try-in pastes (Variolink Esthetic LC) were used as the luting cement material. The color of each material group was measured before and after cementation using the three cement shades, and the CIE L*a*b* coordinates were obtained with a spectrophotometer. Values for the translucency parameter (TP) and color change delta E (E) before (baseline) and after cementation of each specimen were determined. To compare differences among the material groups within each shade of cement and among various shades of cement within each material, the data were analyzed using one-way ANOVA and post hoc testing. RESULTS. Color coordinates L*, a* and b* significantly changed after the application of try-in pastes relative to baseline values, with a noticeable decrease in lightness (L*) (P < .05). A significant color change (ΔE) was observed in all tested materials after cementation, with ΔE values exceeding 3.3 (P < .05). Although TP changed after cementation for most materials tested, these changes were not statistically significant (P > .05). Shofu and Dima ceramics showed the lowest TP values, while Aidite and Prettau showed the highest TP values. For e.max, translucency decreased after cementation with neutral and warm shades, and it significantly increased after cementation with a light shade. CONCLUSION. The shade of cement significantly altered the final color of the ceramic veneer material to a level above the threshold at which the clinical perception of color change occurred (> 3.3). The TP was not influenced by the cement shade. The translucency levels of the novel ultratranslucent multilayer monolithic zirconia ceramics Aidite and Prettau were higher than that of the lithium disilicate e.max material.

Color Stability of IPS Empress 2 Glass-Ceramic after Heat-Pressing and Heat-Treatments (열가압 및 열처리에 따른 IPS Empress 2 Glass-Ceramic의 색 안정성)

  • Song, Kie-Bum;Lee, Sang-Kwon;Kim, Yu-Ree;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • This study was performed to investigate the color stability of IPS Empress 2 glass-ceramic after heat-pressing and/or heat-treatments. Three types of IPS Empress 2 ingots (shade 100, 300, 500) were tested. For this study, three groups were prepared as follows: group 1 is as-received material, group 2 is heat-pressed material, and group 3 is fully heat -treated material. The color of the specimens was measured with a colorimeter. The data were statistically evaluated with one-way ANOVA and Scheffe's multiple test. The results obtained were as follows: 1. IPS Empress 2 glass-ceramic demonstrated less color stability according as the shade is lighter. Namely, the shade 500 showed the lowest color shifts and the shade 100 showed the greatest color shifts after heat-pressing and heat-treatments. 2. In the cases of shade 100 and 300, the changes of ${\Delta}E^*$ were affected mostly by the changes of $L^*$ and $b^*$. 3. In ${\Delta}E^*$ of the shade 100, there were significant differences among the group 1, 2, and 3 (P<0.001). 4. In ${\Delta}E^*$ of the shade 300, there were significant differences between the group 1 and 2, and the group 1 and 3 (P<0.001). 5. In ${\Delta}E^*$ of the shade 500, there was significant difference only between the group 1 and 3 (P<0.001).

Changes of Chlorophyll Fluorescence and Photosynthesis under Different Shade Materials in Korean Ginseng(Panax ginseng C. A. Meyer) (해가림자재에 따른 인삼의 엽록소 형광 반응 및 광합성 변화)

  • Won, Jun-Yeon;Lee, Chung-Yeol;Oh, Dong-Joo;Kim, Sung-Man
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.416-420
    • /
    • 2008
  • This study was conducted to investigate the influence of shading material on the chlorophyll fluorescence, photosynthesis, transpiration, stomatal conductance and its any correlations in Panax ginseng C.A.Meyer. Fo was higher in polyethylene shade net than in silver-coated shading plate, but this treatment caused a lower Fm in comparison with silver-coated shading plate. Also, Fv/Fm and PhiPS2 showed higher in silver-coated shading plate than in polyethylene shade net. The relationship between net photosynthetic rate and transpiration, stomatal conductance were increased as the PAR (Photosynthetic active radiation) was increased and reached maximum at the $200-400\;{\mu}mol/m^{2}/s$ of PAR in all of leaves, and the higher in silver-coated shading plate than in polyethylene shade net. A linear equation was obtained between net photosynthetic rate and transpiration, net photosynthetic rate and stomatal conductance. SPAD was higher in silver-coated shading plate than in polyethylene shade net.

SHADE ANALYSIS OF ANTERIOR TEETH USING DIGITAL SHADE ANALYSIS SYSTEM (Digital Shade Analysis System을 이용한 전치부의 색조 특성에 관한 연구)

  • Kim Hee-Eun;Cho In-Ho;Lim Ju-Hwan;Lim Hun-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.565-581
    • /
    • 2003
  • Statement of problem : A scientific examination and understanding of overall aspects of the natural dentition is the first step involved in making a satisfactory selection in the shade of an aesthetic prosthesis. Proper natural shade selection of the prosthetic restoration that is in harmony with the remaining dentition is as important aesthetically, as harmony of form and function in the anterior dentition. Clinically, the most commonly applied method of shade selection has been visual, but because of the subjective nature inherent to this method, shade selection results are variable and can be influenced by such factors as the technician, the type of shade guide used, and the type and intensity of the lighting. Purpose : The purpose of this study was to develop a more objective and scientific approach to examining and understanding the shade of teeth, which has in turn lead to the development of a number of shade analysis devices that present a more objective method of shade analysis. Material and Method : In this study, the shades of healthy anterior teeth were examined and analyzed using the recently developed digital shade analysis of the $ShadeScan^{TM}$ System. The study examined 80 individuals in their twenties, 40 males and 40 females, presenting 6 healthy, unrestored maxillary anterior teeth. Tooth brushing and oral prophylaxis were performed prior to evaluation. The ShadeScan handpiece was used to acquire images of the 6 maxillary anterior teeth. These images were analyzed using the Vita/Classical mode of the $ShadeScan^{TM}$ Software, and shade maps of each tooth were acquired and divided into cervical, middle, and incisal thirds. The shade distribution of each third, left and right symmetry, and gender differences were investigated and analyzed. Results : The results of the study are as follows : 1. An overwhelming majority of the examined teeth were found to possess shades belong to Group A, with the greatest variations occurring at the middle and cervical thirds of the maxillary central and lateral incisors, in both male and female subjects. 2. Canines of both male and female subjects showed left and right symmetry with uniform shade distribution of A4 and C4, while the lateral and central incisors showed left-right symmetry of the incisal 1/3 with a uniform shade distribution of A2 and A3 shades 3. No significant differences in shade distribution were seen between genders in maxillary canines, whereas maxillary central and lateral incisors showed differences at the middle and cervical thirds between male and female subjects The results of this study show that with the exception of maxillary canines, maxillary anterior teeth display a diverse shade distribution as well as gender differences. Conclusion : Clinically, when making a shade selection using the existing shade guide, one must consider the fact that even a single tooth consists of a variety of shades. The results of this study show that when selecting a shade from a number of groups is difficult, shades from A group are the most consistent with the natural shade or maxillary anterior teeth.

SHADE ANALYSIS OF ARTIFICIAL TEETH USING SHADE $SCAN^{TM}$ SYSTEM (ShadeScan$^{TM}$ System을 이용한 인공치의 색조분석)

  • Sung, Chai-Ryun;Cho, In-Ho;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.443-457
    • /
    • 2004
  • Purpose: The purpose of this study was to analyze and estimate whether each company may produce the color of artificial teeth as it stands, in the standard of vita classical shade guide using ShadeScan$^{TM}$ System. Material and methods: we chose the products of 6 companies -EFUCERA, IVOCLAR, ENDURA, TRUBYTE, DURADENT, and DURACROSS- estimated the shade value of each fixed point(cervical, body, and incisal area) of artificial tooth, and verified the equality among the samples from the same company. Results: First, the variation appeared significant at cervical and incisal area. It means that there were significant differences between cervical and incisal area although the most similar artificial teeth to the patients’natural teeth were provided. Second, the results in the body area showed that the variation between artificial and natural teeth was finite(p<0.05) in that area. Conclusion: it shows that the reproduction of colors of artificial teeth might be successful regarding the body is the most important part for a determination of the color of artificial teeth. However, more complements are necessary for the better reproduction of the color of artificial teeth between cervical and incisal area.

Color Matching of Single-Shade Composite Resin by Various Pulp Capping Materials in Anterior Teeth

  • Sohyun Park;Jongsoo Kim;Jongbin Kim;Mi Ran Han;Jisun Shin;Joonhaeng Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.176-184
    • /
    • 2024
  • This study aimed to compare color matching between single-shade composite resin-restored teeth with various pulp capping materials and the dentin surrounding the restoration through instrumental analysis and visual evaluation of the color difference. Fifty maxillary right central incisor acrylic resin teeth were prepared with standardized Class III cavities on the proximal surfaces. These teeth were divided into five groups: restored with single-shade composite resin only; Ultra-BlendTM plus followed by single-shade composite resin; TheraCal PTTM followed by single-shade composite resin; Endocem® MTA premixed followed by single-shade composite resin; and Well-root PTTM followed by single-shade composite resin. The color difference (ΔEab*) between the restored area and the center of the resin teeth was measured using a spectrophotometer. No significant color difference was observed in groups restored with only single-shade composite resin, Ultra-BlendTM plus, and TheraCal PTTM. The visual evaluation revealed that Ultra-BlendTM plus exhibited the best color matching score, whereas the Endocem® MTA premixed and Well-root PTTM groups showed significantly lower color matching scores than the single-shade composite resin-only group. When opting for single-shade composite resin usage for anterior tooth restorations with the aim of reducing chair time, pulp capping materials Ultra-BlendTM plus and TheraCal PTTM provide esthetically pleasing results.

Evaluation of shade guide using digital shade analysis system (색조 선택 시스템을 이용한 shade guide의 색조 분석)

  • Lee, Seung-Taek;Lee, Jong-Hyuk;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Statement of problem: There are two methods of color choice for the esthetic restoration. One is visual shade matching which draws a comparison between shade guide and teeth in dentist's own eye and the other is using a digital shade analysis system recently introduced. Although the visual shade matching has a lot of problems, decision of color by this visual shade matching and the ways of expression for the decided color are still applicable to clinical dentistry. Purpose: This study is designed to investigate shade guides used in the dental clinics and laboratories have the same value using ShadeEye-$NCC^{(R)}$ dental chroma meter (Shofu Inc., Kyoto, Japan) using shade guide are evaluated. Material and methods: At the first experiment, eight Vita Lumin Vacuum shade guides (Vident Inc., California, USA) were collected from the dental clinics. A1 and B1 shade tabs are chosen and the colors are analyzed five times each in both tooth and porcelain modes by digital shade analysis system, ShadeEye-$NCC^{(R)}$. In the second experiment, twelve Vita shade guides using practically in the dental clinics and laboratories were collected and also A1 and B1 shade tabs are chosen and the colors of A1 and B1 are analyzed one time each in both tooth and porcelain modes by ShadeEye-$NCC^{(R)}$. Results and conclusion: There were significant differences among eight shade guides in terms of shade (chroma), value and hue in both of A1 and B1 (P<.05). Shade guides using in present both dental clinics and laboratories did not show significant differences, except A1 in the porcelain mode, it showed significant differences (P<.05) in the shade even though the shade tab has the same name.

COLOR CHANGE WITH CEMENT THICKNESS AND COLOR SHIFT PATTERN OF EACH SHADE ERIES IN GI CEMENT (두께에 따른 GI Cement의 색상 변화 및 각 Shade 내의 색상 변화 추이도)

  • Park, Ki-Yeon;Shin, Dong-Hoo
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.622-636
    • /
    • 1997
  • Glass ionomer cements, which had been developed in 1972, were widely used as an agent for cementation, base, pit and fissure sealant, and esthetic filling material with the advantages of excellent biocompatibility, anti-cariogenic fluoride release. Specimens were made to evaluate the color change of Glass ionomer cement with a newly developed improved Fuji II Le. Specimens for color change study with cement thickness of 1, 2, 3mm were made and those for the study of color shift pattern were made with the assumption that new mid-shade can be made by mixing of equal amount of both shades in 2mm thickness. After 24 hours in a $37^{\circ}C$ incubator, CIELAB color spaces were evaluated with a spectrophotometer. The results were as follows ; 1. All specimens discolored to dark and blue with an increased thickness in all shades (p<0.05). 2. There were significant $a^*$ space (red-green direction) changes in every A, B, C, D shade series except the relationship between 1mm and 2mm thickness groups in B shade series. But the changes were irregular, i.e., each shade series has its own pattern. 3. Each shade series showed its own specific color shift pattern in all $L^*$, $a^*$, $b^*$ spaces. 4. B shade series showed less amont of changes in ${\Delta}{\pm}E$ than those of A and C shade series (p<0.05), but there was no significant difference in ${\Delta}E$ within each shade series.

  • PDF