• Title/Summary/Keyword: Sewer flow

Search Result 197, Processing Time 0.022 seconds

Improvement of Infiltration Performance Measurement in BTL (Build-Transfer-Lease) Sewer Rehabilitation Projects - Focusing on Jeju Special Self-Governing Province - (하수관거정비 임대형민자사업에 있어 침입수 성과지표의 개선에 관한 연구 - 제주특별자치도를 중심으로 -)

  • Ko, Young-Nam;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1133-1143
    • /
    • 2016
  • The purpose of this study is to improve project performance analysis indicators for BTL sewer rehabilitation projects. Among the assessment indicators for BTL sewer rehabilitation projects, an infiltration assessment indicator is given a high score of 17.5 points as a single assessment item. This infiltration assessment indicator is assessed focusing on the amount of infiltration, and presently calculated according to 'Nighttime Domestic Flow Evaluation' method. However, this assessment indicator's failure to reflect the geological features of Jeju region is emerging as a problem in the operational stage. Thus, this study intended to compare and analyze the calculation result depending on the assessment indicators and the actual amount of infiltration, centering on Jeju region. To this end, this study analyzed the amount of infiltration in five areas of Jeju Province calculated according to 'Nighttime Domestic Flow Evaluation' method. Also, a complete enumeration survey was carried out about the conditions for actual infiltration occurrence. According to the results of this survey, ground water level is distributed lower than the level of sewer pipes. The results of a sewer pipe function test show there was no infiltration occurrence caused by sewer pipe defect. So, it is concluded that 'Nighttime Domestic Flow Evaluation' method, which is utilized for the current assessment indicator, is not appropriate to apply to Jeju region, and it is thought that there is a need to establish infiltration criteria specialized for Jeju region.

Method to Determinate Monitoring Points in Sewer Networks (하수관망 내 모니터링 지점 선정 기법)

  • Lee, Jung-Ho;Jun, Hwan-Don;Park, Moo-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • In order to manage a sewer system effectively, flow conditions such as flux, water quality, Infiltration and Inflow (I/I), Combined Sewer Overflows (CSOs), etc need to be monitored on a regular base. Therefore, in sewer networks, a monitoring is so important to prevent the river disaster. Monitoring all nodes of an entire sewer system is not necessary and cost-prohibitive. Water quality monitoring points that can represent a sewer system should be selected in a economical manner. There is no a standard for the selection of monitoring points and the quantitative analysis of the observed data has not been applied in sewer system. In this study, the entropy method was applied for a sewer network to evaluate and determine the optimal water quality monitoring points using genetic algorithm. The entropy method allows to analyze the observed data for the pattern and magnitude of temporal water quality change. Since water quality measurement usually accompanies with flow measurement, a set of installation locations of flowmeters was chosen as decision variables in this study.

An Experimental Study for Drainage Capacity Increment at Surcharged Square Manholes (과부하 사각형 맨홀의 배수능력 증대에 관한 실험적 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.619-625
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at square manholes is usually not significant. However, the energy loss at surcharged manholes is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharged flow. Hydraulic experimental apparatus which can change the manhole inner profile(CASE I, II, III, and IV) and the invert types(CASE A, B, C) were installed for this study. The experimental discharge was $16{\ell}/sec$. As the ratio of b/D(manhole width/inflow pipe diameter) increases, head loss coefficient increases due to strong horizontal swirl motion. The head loss coefficients for CASE I, II, III, and IV were 0.46, 0.38, 0.28 and 0.37, respectively. Side covers increase considerably drainage capacity at surcharged square manhole when the ratio of d/D(side cover diameter/inflow pipe diameter) was 1.0. The head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is the most effective for energy loss reduction at surcharged square manhole. This head loss coefficients could be available to evaluate the urban sewer system with surcharged flow.

Effect of infiltration/inflow by rainfall for sewerage facilities in the area with partially separate sewer system (불완전 분류식 하수처리구역의 강우에 의한 하수도시설의 침입수/유입수 영향 분석)

  • Shin, Jungsub;Han, Sangwon;Yook, Junsu;Lee, Chungu;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.177-190
    • /
    • 2019
  • The purpose of this study was to analyze the effects of sewerage facilities through I/I analysis by rainfall by selecting areas where storm overflow diverging chamber is remained due to the non-maintenance drainage equipment when the sewerage system was reconstructed as a separate sewer system. Research has shown that wet weather flow(WWF) increased from 106.2% to 154.8% compared to dry weather flow(DWF) in intercepting sewers, and that the WWF increased from 122.4% to 257.6% in comparison to DWF in storm overflow diverging chamber. As a result, owing to storm overflow diverging chamber of partially separate sewer system with untreated tributary of sewage treatment plant, rainfall-derived infiltration/inflow(RDII) has been analyzed 2.7 times higher than the areas without storm overflow diverging chamber. Meanwhile, infiltration quantity of this study area was relatively higher than that of other study areas. Therefore, it is necessary to reduce infiltration quantity through sewer pipe maintenance nearby river. Drainage equipment maintenance should be performed not to operate storm overflow diverging chamber in order to handle the appropriate sewage treatment plant capacity for rainfall because it is also expected that RDII due to rain will occur after maintenance. In conclusion, it is necessary to recognize aRDII(allowance of rainfall-derived infiltration/inflow) and to be reflected it on sewage treatment plant capacity because aRDII can occur even after maintenance to the complete separate sewer system.

Estimation of Solid Sediments Load by Sewer and Land Surface for Maintenance of Combined Sewer Systems (합류식 관거 유지관리를 위한 하수 및 지표면 고형물 부하량 산정)

  • Lee Jae-Soo;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.533-544
    • /
    • 2006
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimation of solid loads from sewer and surface in a drainage basin is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer solid loads during dry weather in combined sewer systems and for estimating solid loads on surface in a drainage basin developed by the U. S. Environmental Protection Agency were applied and analyzed in Gunja drainage basin in Korea. As result, the estimated solid loads from sewer and surface are 205.8,759kg/yr and 1,321,993kg/yr respectively, and total solid loads is 1,527,752kg/yr. The estimated solid removal from street cleaning, dredging from pipe system and pumping house is 1,486,636kg/yr. Therefore, the applied methods show resonable results. More reliable estimation can be achieved if long-term measurements and adjustment of estimation equations are carried out, and this estimation methods can be used usefully for the management of combined sewer system with reduction of cost and effort.

Analysis of Estimation Technique for Solid Sediments in Combined Sewer Systems (합류식 관거 내 고형물 퇴적량 산정기법 분석)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.405-415
    • /
    • 2006
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. Sewer solid accumulations in drainage systems also create the 'first-flush' phenomena during wet weather runoff periods. In order to solve these problems, measurement of these loadings for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer sediment solid during dry weather in combined sewer systems developed by the U. S. Environmental Protection Agency were applied in a drainage system in Korea. As result, the appropriate equation can be selected and applied according to the available data. However, the estimated solid sediment shows considerable difference between methods which classified by model and estimation methods of variable. The estimated values using equations (1) $\sim$ (4) are greater than that of equations (5) $\sim$ (9) and intermediate models show greater values than elaborate or simplest models. The comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, but this estimation method can be used usefully for the management of sewer solid with reduction of cost and effort if the measurement is carried out and the equation is adjusted according to the actual drainage systems in Korea.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

Characteristics and Combined Sewer Overflows (합류식 하수관거의 유출 특성 분석 조사)

  • An, Ki-Sun;Jang, Sung-Ryong;Kwon, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.747-753
    • /
    • 2010
  • It follows in quality and sewage exclusion method of the investigation objective sector and the Combined Sewer Overflows which is suitable in regional characteristics and the confluence area against the rainfall initially a flow and the medulla and measurement - it analyzes the initial rainfall outflow possibility control plan which is suitable in the domestic actual condition and it proposes the monitor ring plan for the long-term flow and pollution load data accumulation. From the research which it sees the Infiltration water/Influent water and CSOs investigation it passes by the phase of hazard chain and Namwon right time 4 it does not hold reverse under selecting, Measurement it used the hazard automatic flow joint seal Sigma 910 machine and in case 15 minute interval of the I/I, it measured a flow at case 5, 15 minute standing of the CSOs. The water quality investigation for the water leakage investigation of the I/I and the sewage from the point which is identical with flow measurement during on-the-spot inspection duration against 6 items which include the BOD sampling and an analysis, when the rainfall analysis for CSOs fundamental investigation analyzed against 18 items which include the BOD sampling. Consequently, for the optimum interpretation invasion water / inflow water of the this investigation area day average the lowest flow - water quality assessment veterinarian optimum interpretation hazard average per day - lowest flow - it averages a medulla evaluation law department one lowest flow evaluation technique and it selects, it presentation collectively from here it gets, position result with base flow analysis of invasion water / inflow water.

Selection of concrete lining corrosion protection method for large sewer tunnels (하수터널의 콘크리트 라이닝 부식 방지공법 선정방법에 관한 고찰)

  • Moon, Joon-Shik;Lee, Sungjune
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.347-360
    • /
    • 2014
  • Recently construction of large sewer tunnels used also as underground sluiceways/storages is increasing in order to prevent urban inundation, untreated sewage flow into rivers from combined sewer overflows and consequential river pollution due to climate change. Most of these large sewer tunnels are constructed with concrete and the concrete lining should be protected from corrosion caused by hydrogen sulfide($H_2S$). This paper introduced popular concrete corrosion protection methods for large sewer tunnels with 100-plus years of life cycle, and pros and cons of each corrosion protection methods were described by giving specific examples. However, it is difficult to objectively assess corrosion protection alternatives because of insufficient track record of corrosion protection methods applied to large sewer tunnels. In this paper, the evaluation process for selecting a corrosion protection alternative was introduced for large sewer tunnels using a case study.

Flood Simulation for Basin-Shaped Urban Watershed Considering Surface Flow (분지형 도시유역에서의 노면류를 고려한 침수모의)

  • Ahn, Jeonghwan;Cho, Woncheol;Jung, Jaehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.841-847
    • /
    • 2014
  • Urban runoff models have been continuously developing with concerns for urban flood. Recently, models that be able to quantitatively analyze surface inundation caused by overflowed water from storm sewer were also developed by coupling 1-dimensional sewer model and 2-dimensional surface flow model. However, only overflowed water from storm sewer can be analyzed by the models have been developed until now. They are limited to be not able to analyze surface inundation caused by surface runoff that could not flow into the storm sewer. In order to overcome the limitation, basin-overlap method was devised adding a dummy 1-dimensional sewer layer to the model, so it can consider the efficiency of inflow to the storm sewer system. XP-SWMM 2011 is applied for urban runoff model and the flood event occurred on July 27, 2011 in basin-shaped Sadangcheon watershed is chosen for study inundation event. According to simulation results basin-overlap method reappear the observed inundation event more precisely than traditional method. This results suggest that drainage system has to be improved for reducing inundation caused by surface runoff and would be used as considerations for planning an urban basin design magnitude.