• Title/Summary/Keyword: Sewage treatment works

Search Result 41, Processing Time 0.023 seconds

A study on AHP application of selection method for the best treatment technology of public sewage treatment works (공공하수처리시설 공법 선정을 위한 계층화분석법 적용방안 고찰)

  • Jeong, Dong-Hwan;Cho, Yangseok;Ahn, Kyunghee;Choi, In-Cheol;Chung, Hyen-Mi;Lee, Jaekwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.427-440
    • /
    • 2016
  • Various kinds of processes are used in the Public Sewage Treatment Works(PSTWs) in order to achieve water quality criteria and TMDL in the watershed. The performance of the existing processes at PSTWs depends on influent characteristics, effluent quality target, amount of sludge production, power cost and other factors. In present, the Selection Guideline for the Available Treatment Process of PSTWs is used for a process decision in the country. But there are some problems regarding redundancy of assessment factors and complexity of assessment procedure in the guideline. In this study, we did a test application of AHP for process selection of PSTWs, which propose is to simplify assessment factors such as pollutant removal amount, sludge generation, electricity consumption, stability of operation, convenience of maintenance, easiness of existing process application, installation cost, and operating cost concerning of environmental factors, technical factors and economical factors. According to the study, the PSTWs selection procedure guideline can be improved using application of AHP method.

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF

A Study on the Physical and Chemical Characteristics of the Constructed Wetland Soil for Sewage Treatment (오수처리용 인공습지내 토양의 이화학적 특성조사)

  • Yoon, Chun-Gyeong;Kwun, Tae-Young;Woo, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.2 s.10
    • /
    • pp.24-29
    • /
    • 1999
  • The soil from constructed wetland system for sewage treatment was analyzed to examine physical and chemical characteristics. Clogging and lowered permeability were the physical matters of concern, and nutrient and salt accumulation were the chemical matters of concern. However, the soil properties of the constructed wetland system after 3 year operation demonstrated no degradation and still the soil works almost same as the initial stage. Encouragingly, no sludge accumulation was observed inside the system. Therefore, it implies that the wetland sewage treatment system can work continuously as long as it is operated and managed properly not to cause excessive pollutant loading.

  • PDF

A Study on Impact of Public Sewage Treatment Works Affecting Water Qualities of the Lake Uiam in Chuncheon City (춘천시 공공하수처리시설의 방류수가 의암호 수질에 미치는 영향 고찰)

  • Jeong, Donghwan;Cho, Yangseok;Choi, Incheol;Ahn, Kyunghee;Chung, Hyenmi;Kwon, Ohsang
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.406-416
    • /
    • 2014
  • When abnormal taste and odor were detected in the tap water of the North-Han river watershed during the dry season in late 2011, excessive nutrients with algal growth in the Lake Uiam and weather factors were considered to be among its causes. The nutrients, in particular, originated from domestic sewage in the Chuncheon area. This study was conducted to investigate relations between the algal growth in the Lake Uiam and the contribution of nutrients from public sewage treatment works (PSTWs) in Chuncheon city, and based on this to analyze the environmental impact. Nutrients in the Lake Uiam have already been accumulated to the level of eutrophication. Even in winter, the conditions in the lake such as retention time and water temperature were favorable to boost algal growth. After phosphorus treatment processes were introduced, the PSTWs in the Lake Uiam watershed were able to reduce the total phosphorus loads by 43%. The algal concentrations in the Lake Uiam also dropped by about 7%. The nitrogen treatment efficiencies in the PSTWs, on the other hand, remained almost the same after the introduction of the phosphorus treatment processes. To solve these problems more efficiently, it is necessary to develop management strategies for the upstream area of the Lake Uiam and set plans to improve nitrogen treatment operation and management for the PSTWs in Chuncheon.

Improvement of Sewerage Treatment System (하수도 업무추진체계 개선)

  • Lee, Chan-Hui
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.5-15
    • /
    • 1997
  • This year the Ministry of Environment(MOE) made a fifth amendment to the Sewerage Act, which was enacted in August 1966. The first objective of this amendment is to introduce small public sewerage system that is designed to treat wastewater produced in rural areas. Before small public sewerage system was introduced to the Act through this amendment, only urban areas were covered by public sewerage system. Because small sewerage system was introduced, wastewater generated in urban areas as well as rural areas can now be treated by public sewage treatment plants. In addition to this, some authorities on sewerage affairs were moved from the MOE to local governments by this amendment in order to enhance the power and responsibility of local governments in relation to sewerage affairs. Also, this amendment enabled local governments to entrust the authority to establish and manage sewage treatment plants to private companies, and enabled the MOE to organize an advisory committee on sewerage to review economic and technical aspects ofsewage treatment plants. This amendment went into effect September 8, 1997.

  • PDF

A Study on the Management System Improvement of Effluent Water Qualities for Public Sewage Treatment Facilities in Korea (우리나라 공공하수처리시설의 방류수 수질 관리체계 개선방안 고찰 - 미국, 일본, 유럽의 공공하수처리시설 방류수 수질 관리제도를 중심으로 -)

  • Jeong, Donghwan;Choi, Incheol;Cho, Yangseok;Chung, Hyenmi;Kwon, Ohsang;Yu, Soonju;Yeom, Icktae;Son, Daehee
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.296-314
    • /
    • 2014
  • In recent years, Ministry of Environment (MOE) has been implementing a phased strengthening of the effluent standards for sewage treatment plants. In this regard, a comprehensive system should be developed to help check the appropriateness of such standards by specifying the grounds for standard-setting and investigating the current operation of sewage treatment plants clearly. It is necessary to establish a new standard-setting system for the effluent that is in a closer connection with the environmental criteria and rating systems. In the United States, the federal government provides guidelines on the least provisions and requirements for the Publicly Owned Treatment Works (POTWs). Local governments set the same or stricter guidelines that reflect the characteristics of each state. In Japan, the sewage treatment plants are subject to both the effluent standards and the discharge acceptable limits to pubic waters under the sewerage law. Specific requirements and limits are set in accordance with local government regulations. The European Union imposes sewage treatment plants with different provisions for effluent standards, depending on the sensitivity of public waters to eutrophication. The effluent standards for sewage treatment plants are classified by pollutant loads discharged to receiving waters. MOE also needs to introduce systems for setting new parameter standards on a POTW effluent by applying statistical means and treatment efficiencies or optimal treatment techniques, as seen in the cases of the US National Pollutant Discharge Elimination System (NPDES) or the EU Integrated Pollution Prevention and Control (IPPC).

A Study on the Determination Method of TOC Effluent Limitation for Public Sewage Treatment Plants (하수처리시설의 방류수 수질기준 설정방법 고찰 - TOC를 중심으로 -)

  • Jeong, Dong-Hwan;Cho, Yangseok;Ahn, Kyunghee;Chung, Hyen-Mi;Park, Hoowon;Shin, Hyunsang;Hur, Jin;Han, Daeho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.241-251
    • /
    • 2016
  • As the Enforcement Ordinance of Environmental Policy Act was revised in 2013, total organic carbon(TOC) was added as an indicative parameter for organic matter in Water and Aquatic Ecosystem Environmental Criteria. Under these imminent circumstances, a regulatory standard is needed to achieve the proposed TOC limitation control water quality from the public sewage treatment plants(PSTWs). This study purposes to present the determination method for TOC effluent limitation at the PSTWs. Therefore we investigate the TOC effluent limitation of foreign countries such as EU, Germany and USA, and analyse the effluent water qualities of PSTWs. In using these TOC data, we review apprehensively the statistics-based, the technology-based, and the region(water quality)-based determination method of TOC effluent limitation for PSTWs.