• Title/Summary/Keyword: Sewage Toxicity

Search Result 40, Processing Time 0.024 seconds

Toxicity characteristics of sewage treatment effluents and potential contribution of micropollutant residuals

  • Kim, Younghee;Farnazo, Danvir Mark
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.318-327
    • /
    • 2017
  • Background: A typical sewage treatment plant is designed for organic and nutrient removal from municipal sewage water and not targeted to eliminate micropollutants such as pesticides, pharmaceuticals, and nano-sized metals which become a big concern for sustainable human and ecological system and are mainly discharged from sewage treatment plant. Therefore, despite contaminant removal by wastewater treatment processes, there are still remaining environmental risks by untreated pollutants in STP (sewage treatment plant) effluents. This study performed aquatic toxicity tests of raw wastewater and treated effluents in two sewage treatment plants to evaluate toxicity reduction by wastewater treatment process and analyze concentration of contaminants to reveal potential toxic factors in STP effluents. Methods: Water samples were collected from each treatment steps of two STPs, and acute and chronic toxicity tests were conducted following USEPA (United States Environmental Protection Agency) and OECD (Organization for Economic Cooperation and Development) guidelines. Endpoints were immobility for mortality and reproduction effect for estrogenicity. Results: Acute $EC_{50}s$ (median effective concentration) of influents for Seungki (SK) and Jungnang (JN) STPs are $54.13{\pm}32.64%$ and $30.38{\pm}24.96%$, respectively, and reduced to $96.49{\pm}7.84%$ and 100%. Acute toxicity reduction was clearly correlated with SS (suspended solids) concentration because of filter feeding characteristics of test organisms. Chronic toxicity tests revealed that lethal effect was reduced and low concentration of influents showed higher number of neonates. However, toxicity reduction was not related to nutrient removal. Fecundity effect positively increased in treated wastewater compared to that in raw wastewater, and no significant differences were observed compared to the control group in JN final effluent implying potential effects of estrogenic compounds in the STP effluents. Conclusions: Conventional wastewater treatment process reduced some organics and nutritional compounds from wastewater, and it results in toxicity reduction in lethal effect and positive reproductive effect but not showing correlation. Unknown estrogenic compounds could be a reason causing the increase of brood size. This study suggests that pharmaceutical residues and nanoparticles in STP effluents are one of the major micropollutants and underline as one of estrogenic effect factors.

Ecotoxicological Evaluation of Sewage Sludge Using Bioluminescent Marine Bacteria and Rotifer

  • Park, Gyung-Soo;Chung, Chang-Soo;Lee, Sang-Hee;Hong, Gi-Hoon;Kirn, Suk-Hyun;Park, Soung-Yun;Yoon, Seong-Jin;Lee!, Seung-Min
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2005
  • Bioassay using the marine bacteria, Vibrio fischeri and rotifer, Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox(R) bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox(R) results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.

Evaluation and Comparison with Standard 48 hr Acute Bioassay and High Temperature Rapid Toxicity Test for Sewage Toxicity Test (하수의 독성평가를 위한 표준독성시험법과 온도증가 단기독성평가법의 비교 평가)

  • Lee, Sang-Ill;Jun, Byong-Hee;Weon, Seung-Yeon;Kim, Yi-Jung;Kim, Keum-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • A new method, ToxTemp (TOXcity test based on TEMPerature control) using Ceridaphnia dubia was applied to evaluate the toxicity of insecticide materials and compared with the standard 48 hr acute bioassay. BPMC, diazinon and fenitrothion may cause the inhibition to the biological process in sewage treatment plant and need to detect toxicity within short contact time. The ToxTemp method showed sensitive detection with more shorter contact of 1-1.5 hr time than that of the standard 48 hr acute bioassay. To evaluate toxicity of real wastewater/sewage, the inhibition rate of nitrification and oxygen uptake rate (OUR) using activated sludge, the standard 48hr acute bioassay and ToxTemp method using C. dubia were compared, respectively. On the basis of the inhibition rate of nitrification, the OUR test showed the less sensitive results at the relatively strong toxic sewage. On the other hands, the standard 48hr acute bioassay and ToxTemp method using C. dubia represented the toxicity of each wastewater/sewage with high sensitivity. Even the slightly low (about 1.5%) sensitivity, the ToxTemp method showed the high applicability to the real site of sewage treatment plant.

Variation of hazardous substances in sewage ecotoxicological assessment (하수 원수내 유해물질 변화에 따른 생태독성평가)

  • Seo, Byong-Won;Lee, Ju-Hwa;Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.603-610
    • /
    • 2013
  • According to industrialization, increased toxic chemicals discharge has been causing water pollution. Especially domestic sewage is a major source of water pollution. Sixty percent of the total wastewater discharged is domestic sewage. Self-purification capacity of rivers and streams is drastically reduced by the emission of domestic sewage, industrial wastewater and livestock wastewater. Although domestic sewage is managed by implementing standards and regulations, toxicity effect of domestic sewage to humans and the environment is not yet clearly understood. In this study, by using daphnia magna, the ecotoxicity of domestic swage was assessed. Cl, Cu, Pb, COD, T-N, DO, pH and residual chlorine were investigated as background concentrations. The experiments were conducted with water samples obtained from three local sewage treatment plants. The experiment results indicated that higher level of toxicity corresponds to the higher pollution concentrations. The higher level of combinations of background concentrations such as heavy metals leads to the worse ecotoxicity. Especially, the Cu concentration affects the TU value.

Toxicity Assessment of the Soil by Bioassay Following a Long-Term Application of Sewage Sludge (생물검정법을 이용한 하수슬러지 장기연용 토양의 독성평가)

  • Nam, Jae-Jak;Lee, Seung-Hwan;Kwon, Soon-Ik;Hong, Suk-Young;Lim, Dong-Kyu;Koh, Mun-Hwan;Song, Beom-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • Bioassay was employed to assess toxicity of soil which had been treated with sewage sludges for seven years. The $Microtox^{(R)}$ and root elongation test of lettuce (Lactuca Sativa.) elucidated that the intensity of soil toxicity was closely related with the types and amount of sewage sludges applied. Both bioassay methods proved to be useful in an assessment of soil toxicity and were consistent to some extent with the conventional chemical analysis methods. $EC_{50}$ values resulted from $Microtox^{(R)}$ were highly correlated with concentration of heavy metals in soils amended with sewage sludges : Cu ($r^2=\;0.86^{**}$), Cr ($r^2\;=\;0.84^{**}$), Ni ($r^2\;=\;0.83^{**}$), and Zn ($r^2\;=\;0.69^{**}$). This demonstrated that both bioassay techniques could be employed as tools for soil toxicity assessment when the soil was exposed to solid wastes such as sewage sludge.

Phytoplankton as Standard Test Species for Marine Ecotoxicological Evaluation (해양생태독성평가를 위한 표준시험생물로서의 식물플랑크톤에 관한 연구)

  • Park Gyung-Soo;Lee Sang-Hee;Lee Seung-Min
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1129-1139
    • /
    • 2005
  • A series of experiments was conducted to identify the potential of five phytoplankton species as standard test species for marine ecotoxicological tests. The candidate phytoplankton species are Skeletonema costatum, Heterosigma akashiwo, Prorocentrum micans, Isochrysis galbana, and Tetraselmis suecica. Salinity tolerance and sensitivity on potassium dichromate as a reference material were identified. Toxicity of eleven ocean dumped sewage sludges and four red tide expellent extracts were estimated by the inhibition of population growth rates (PGR) of marine diatom S. costatum, While most species revealed relatively weak tolerance on salinity, T. suecica demonstrated the highest salinity tolerance ranged from $5\~35$ psu and the others $15\~35$ psu. H. akashiwo revealed the highest sensitivity as 72h $IC_{50}$=0.76mg/L and T. suecica the lowest as 72h $IC_{50}$=8.89mg/L on potassium dichromate. Sludge extracts from industrial waste, domestic sewage and livestock farm waste sludge showed high toxicity as 72h $IC_{50}$<$2\%$ and lowest toxicity from filtration bed sludge as 72h $IC_{50}$=$30.50\%$ NOEC (No Observed Effective Concentration) of sludge extract ranged from <$0.4\%$ to $1.6\%$ and this indicated high phytotoxicity of ocean dumped sewage sludge. The test sensitivity of phytoplankton PGR inhibition was much higher than those of marine rotifer Brachionus plicatilis mortality test and bioluminescent inhibition test by marine bacteria Vibrio fischeri, and comparable with the sea urchin (Strongylocentrotus intermedius) fertilization test. As a result the phytotoxicity test using phytoplankton PGR inhibition ($IC_{50}$) must be a useful tool for marine phyto-toxicological evaluation of ocean dumped materials.

Physicochemical and Toxicological Properties of Effluent Organic Matters from Sewage and Industrial Treatment Plants (하폐수처리장 유래 방류수유기물질의 물리화학적 및 독성학적 특성)

  • Yoo, Jisu;Lee, Bomi;Hur, Jin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Unlike to natural organic matters (NOMs), effluent organic matters (EfOMs) are not well understood due to their complexity and heterogeneity. In this study, EfOMs from sewage and industrial wastewater treatment effluents and Suwannee River NOM (SRNOM) were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions. Specific ultraviolet absorbance (SUVA) and fluorescence excitation emission matrix (FEEM) analyses were used to characterize physicochemical properties. In addition, acute toxicity and oxidative stress to Daphnia magna were evaluated to characterize toxicological properties. EfOMs showed similar properties to microbially derived organic matters having low hydrophobicity, which are totally different from SRNOM having high hydrophobicity. Moreover, acute toxicity and antioxidant enzyme activity in D. magna was largely dependent on fraction types of EfOMs. These findings suggest that EfOMs have different physicochemical and toxicological properties compared with those of NOMs, which needs to be further identified with various sources of EfOMs.

Toxicity Assessment of Ocean Dumping Wastes Using Fertilization and Embryo Development Rates in the Sea Urchin (Hemicentrotus pulcherrimus) (말똥성게 (Hemicentrotus pulcherrimus)의 수정 및 배 발생률을 이용한 해양배출 폐기물의 독성평가)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Kim, Sung-Gil;Park, Jong-Soo;An, Kyoung-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Toxicity assessment of ocean dumping wastes (dye waste, urban sewage, food waste) were examined in the fertilization and embryo development rates of the Sea Urchin, Hemicentrotus pulcherrimus. Spawning was induced by injecting 1 mL of 0.5 M KCl into coelomic cavity. Males released white or cream-colored sperms and females released yellow or orange-colored eggs. Experiments were began within 30 min the collection of both gametes. The fertilization and embryo development rates test were performed for 10 min and 64 h after fertilization, respectively. The fertilization and embryo development rates in the control condition (not including ocean dumping wastes sludge elutriate) were greater than 90%, but suddenly decreased with increasing of ocean dumping waste sludge elutriate concentrations. The fertilization and normal embryogenesis rates were significantly inhibited in all waste sludge elutriate from dye waste ($EC_{50}$=4.37; $EC_{50}$=1.76), urban sewage ($EC_{50}$=5.79; $EC_{50}$=2.00) and food waste ($EC_{50}$=7.68; $EC_{50}$=2.16), respectively. The NOEC (<3.13) and LOEC (3.13) of fertiliztion and normal embryogenesis rates very similar in all waste sludge elutriate. These results suggest that biological assay using the fertilization and embryo development rates of H. pulcherrimus are very useful test method for the ecological toxicity assessment of ocean dumping wastes.

Toxicity Assessment of Ocean Dumping Wastes Using Fertilization and Embryo Development Rates in the Sea Urchin (Strongylocentrotus nudus) (둥근성게(Strongylocentrotus nudus)의 수정 및 배 발생률을 이용한 해양배출 폐기물의 독성평가)

  • Hwang, Un-Ki;Rhee, Choong-Won;Kim, Kwang-Seop;Kim, Hyoung-Choul;An, Kyoung-Ho;Park, Seung-Youn
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • Toxicity of ocean dumping wastes(dye waste, urban sewage, food waste) were examined by observing fertilization and embryo development rates of the Sea Urchin, Strongylocentrotus nudus. Spawning was induced by injecting 1 mL of 0.5 M KCl into coelomic cavity. Males released white or cream-colored sperms and females released yellow or orange-colored eggs. Experiments were began within 30 min after the collection of both gametes. The fertilization and embryo development rates tests were performed for 10 min and 48 h after fertilization, respectively. The fertilization and embryo development rates in the control condition(not including ocean dumping wastes sludge elutriate) were greater than 90%, but markedly decreased with increasing concentrations of ocean dumping waste sludge elutriate. The fertilization and normal embryogenesis rates were significantly inhibited in all waste sludge elutriate from dye waste($EC_{50}$=5.76; $EC_{50}$=4.53), urban sewage($EC_{50}$=9.82; $EC_{50}$=9.67) and food waste($EC_{50}$=3.90; $EC_{50}$=3.27), respectively. The NOEC(>3.13%) and LOEC(3.13%) of fertiliztion and normal embryogenesis rates very similar in all waste sludge elutriate. These results suggest biological assay using the fertilization and embryo development rates of S. nudus are very useful test method for the ecological toxicity assessment of ocean dumping wastes.

A Study on the Rotating Biological Contactors for the Nitrification of Sewage (회전원판공정을 이용한 하수의 질산화에 관한 연구)

  • Jung, Kun-jin;Lee, Sang-Soo;Kim, Si-Hyeon;Park, Kyoo-hong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.189-199
    • /
    • 2002
  • Nitrogen, in its various forms, can deplete dissolved oxygen levels in receiving waters, stimulate aquatic growth, exhibit toxicity toward aquatic life and affect the suitability of sewage for reuse. Pilot-scale Rotating Biological Contactor(RBC) experiments were conducted to examine biological nitrification, respectively, of municipal sewage with five different internal recirculation ratios of 0, 1, 2, 3, and 4 using the constant hydraulic loading of $205L/m^2{\cdot}day$. The use of internal recirculation improved nitrification on account of the dilution of biodegradable organic carbon in influent sewage down to 15 mg/L of $SBOD_5$ or less. Ammonium nitrogen of $14.3{\pm}2.4%$ was consumed by cellular assimilation without the occurrence of denitrification. The thickness of biofilm didn't seem effect significantly the nitrification and denitrification. Nitrification with internal recirculation was found to occur using hydraulic loading rate of as high as $205L/m^2{\cdot}day$, which was beyond the generally known values of it.