• Title/Summary/Keyword: Severe environmental conditions

Search Result 259, Processing Time 0.039 seconds

Prescreening of Environmental Conditions for Prediction of Severe Operation Condition of Offshore Structures

  • Lim, Dong-Hyun;Kim, Yonghwan;Kim, Taeyoung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.252-267
    • /
    • 2015
  • Offshore structures might encounter several environmental and operating conditions during their lifetime of several decades. In order to predict the dynamic behavior of offshore structures, several simulation cases should be considered to deal with all the combinations of ocean environments and operating conditions. Because a sophisticated time-domain coupled dynamic analysis requires an extremely large amount of computational time to handle all the possible cases, an efficient preliminary process to prescreen the probability of severe environmental conditions can be helpful in downsizing the number of simulation cases and computational effort. In this study, a prescreening procedure to reduce the number of environmental conditions for dynamic analyses of offshore structures is proposed. For the efficiency of the procedure, frequency-domain theories were adopted to estimate the platform offset, using quasi-static analyses in line tension prediction. The results were validated by comparing with those of dynamic analysis coupled between platform and mooring lines, and reasonable agreement was observed. In addition, the characteristics of environmental conditions classified to be severe to the system were investigated through the application of the developed prescreening scheme to several actual environmental conditions.

A Study on the Evaluation of Durability of Fiber Reinforced Concrete According to the Change of External Conditions (외부조건의 변화에 따른 섬유보강콘크리트의 내구성능 정가에 관한 연구)

  • Kim, Nam-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.97-104
    • /
    • 2008
  • This study was intended to evaluate the permeable performance through a change of reinforcing materials, curing condition, durability evaluation and permeability test, and to select the reinforcing material which could reduce the durability and water tightness from it, as the study for considering how the change of the outside's environment factors that the concrete structure actually contacted with impacted the concrete's durability especially the permeability by referring to such the background of the study. Accordingly, it was judged that evaluating the permeability by considering the severe environment condition where the concrete structure was placed in was more reasonable than measuring the existing permeability coefficient conducted in the sound state for the permeability evaluation of actually-used concrete structure. In this study, it also could be known that the specimen of hybrid fiber reinforced concrete which mixed the long and short steel fiber was the most effective for water tightness enhancement in severe environmental conditions.

Survivability assessment of Viton in safety-related equipment under simulated severe accident environments

  • Ryu, Kyungha;Song, Inyoung;Lee, Taehyun;Lee, Sanghyuk;Kim, Youngjoong;Kim, Ji Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.683-689
    • /
    • 2018
  • To evaluate equipment survivability of the polymer Viton, used in sealing materials, the effects of its thermal degradation were investigated in severe accident (SA) environment in a nuclear power plant. Viton specimens were prepared and thermally degraded at different SA temperature profiles. Changes in mechanical properties at different temperature profiles in different SA states were investigated. The thermal lag analysis was performed at calculated convective heat transfer conditions to predict the exposure temperature of the polymer inside the safety-related equipment. The polymer that was thermally degraded at postaccident states exhibited the highest change in its mechanical properties, such as tensile strength and elongation.

Corrosion Behavior and Oxide Film Formation of T91 Steel under Different Water Chemistry Operation Conditions

  • Zhang, D.Q.;Shi, C.;Li, J.;Gao, L.X.;Lee, K.Y.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • The corrosion behavior of a ferritic/martensitic steel T91 exposed to an aqueous solution containing chloride and sulfate ions is investigated depending on the stimulated all-volatile treatment (AVT) and under oxygenated treatment (OT) conditions. The corrosion of T91 steel under OT condition is severe, while the corrosion under AVT condition is not. The co-existence of chloride and sulfate ions has antagonistic effect on the corrosion of T91 steel in both AVT and OT conditions. Unlike to corrosion resistance in the aqueous solution, OT pretreatment provides T91 steel lower oxidation-resistance than VAT pretreatment. From scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis, the lower corrosion resistance in the aqueous solution by VAT conditions possibly is due to the formation of pits. In addition, the lower oxidation resistance of T91 steel pretreated by OT conditions is explained as follows: the cracks formed during the immersion under OT conditions accelerated peeling-off rate of the oxide film.

The Environmental Safety Evaluation on Heavy Metal Leaching of Deteriorated Concrete under Severe Conditions (가혹한 조건에서 열화된 콘크리트의 중금속 용출에 대한 환경 안전성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Park, Man-Seok;Kim, Sang-Chel;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.539-546
    • /
    • 2013
  • Cement industry in 1997 began to use industrial waste in cement factory for purpose of resource recycling. However recently, environmental hazard of the cement in accordance with recycling of industrial waste have been raised a problem by contamination around the cement factory and heavy metal leaching in cement. In particular, the presence of $Cr^{6+}$ in cement has become a critical issue, the studies for minimizing of $Cr^{6+}$ in cement have been performed. But, in domestic, most of the research on heavy metal leaching was carried out from the perspective of the cement. Environmental safety assessment in terms of concrete is needed because cement is used to the concrete material. Therefore, this paper was evaluated heavy metals leaching of deteriorated concrete by severe conditions. test result showed that $Cr^{6+}$ were not detected from all the variables.

Field Tracer Experiments under Severe Wether Conditions for the Validation of the Dispersion of Radioactive Materials (방사능 확산 검증을 위한 악기상 조건에서의 추적자 야외확산 실증실험)

  • Han, Moon Hee;Kim, Eun Han;Jeong, Hyo Joon;Jeong, Hae Sun;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • The suitability of the site criteria is a basic requirement for securing safety of nuclear power plants. The suitability should be confirmed through the estimation of environmental radiation effects at the exclusion area boundary under the severe weather conditions. In this study, field tracer experiments over short range of 1 km radius under severe weather conditions were conducted at flat area in Daejeon. Severe weather conditions are represented with stable atmospheric condition and low wind speed. In general, the condition is appeared at clean night time with weak wind. The analysis of the measured distribution of the released tracer gas shows two big differences between the results of the past experiments conducted under the favorable weather conditions. One is the difficulty of finding the typical distribution of the released tracer gas with peak concentration in the downwind direction. The other one is the appearance of the contour of the concentration of tracer gas at several hundred meters even though the gas released at 10 m height over the ground.

Output Signal Analysis for Variation of Resistance Passive Element in the R-L-C Equivalent Circuit Modeling under Temperature Accident Conditions in NPPs (원전 온도 사고 조건에서 R-L-C회로 모델링 등가 회로의 저항 수동 소자 변화에 대한 출력 신호 분석)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hee-Dong;Cho, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.600-602
    • /
    • 2006
  • Some abnormal signals diagnostics and analysis through an important equivalent circuits modeling for passive elements under severe accident conditions have been performed. Unlike the design basis accidents, there are inherently some uncertainties in the instrumentation capabilities under the accident conditions. So, the circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings as an accident alternative method. The simulations can be useful to investigate what the signal and circuit characteristics would be when similar to a variety of symptoms that can result from the environmental conditions such as high temperature, humidity, and pressure condition. In this paper, a new simulator through an analysis of the important equivalent circuits modeling under temperature accident conditions has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of the Multi-SIM code as an engine tool is exported to in-put file of the LabVIEW code. The procedure for the simulator design was divided into two design steps, of which the first step was the diagnosis method, the second step was the circuit simulator for the signal processing tool. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. This simulator should be possible that it could be applied a output signal analysis to some transient signal by variation of the resistance passive elements in the R-L-C equivalent circuit modeling under various degraded conditions in NPPs.

  • PDF

Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres (상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석)

  • Koo, B.W.;Gwon, H.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.

Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data (KLAPS 재분석 자료를 활용한 집중호우의 3차원 분석)

  • Jang, Min;You, Cheol-Hwan;Jee, Joon-Bum;Park, Sung-Hwa;Kim, Sang-il;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.97-109
    • /
    • 2016
  • Heavy rainfall (over $80mm\;hr^{-1}$) system associated with unstable atmospheric conditions occurred over the Seoul metropolitan area on 27 July 2011. To investigate the heavy rainfall system, we used three-dimensional data from Korea Local Analysis and Prediction System (KLAPS) reanalysis data and analysed the structure of the precipitation system, kinematic characteristics, thermodynamic properties, and Meteorological condition. The existence of Upper-Level Jet (ULJ) and Low-Level Jet (LLJ) are accelerated the heavy rainfall. Convective cloud developed when a strong southwesterly LLJ and strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Environmental conditions included high equivalent potential temperature of over 355 K at low levels, and low equivalent potential temperature of under 330 K at middle levels, causing vertical instability. The tip of the band shaped precipitation system was made up of line-shaped convective systems (LSCSs) that caused flooding and landslides, and the LSCSs were continuously enhanced by merging between new cells and the pre-existing cell. Difference of wind direction between low and middle levels has also been considered an important factor favouring the occurrence of precipitation systems similar to LSCSs. Development of LSCs from the wind direction difference at heights of the severe precipitation occurrence area was also identified. This study can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of severe weather.