• Title/Summary/Keyword: Severe Plastic Deformation

Search Result 159, Processing Time 0.026 seconds

Energy-based damage index for steel structures

  • Bojorquez, E.;Reyes-Salazar, A.;Teran-Gilmore, A.;Ruiz, S.E.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.331-348
    • /
    • 2010
  • Ample research effort has been oriented into developing damage indices with the aim of estimating in a reasonable manner the consequences, in terms of structural damage and deterioration, of severe plastic cycling. Although several studies have been devoted to calibrate damage indices for steel and reinforced concrete members; currently, there is a challenge to study and calibrate the use of such indices for the practical evaluation of complex structures. The aim of this paper is to introduce an energy-based damage index for multi-degree-of-freedom steel buildings that accounts explicitly for the effects of cumulative plastic deformation demands. The model has been developed by complementing the results obtained from experimental testing of steel members with those derived from analytical studies regarding the distribution of plastic demands on several steel frames designed according to the Mexico City Building Code. It is concluded that the approach discussed herein is a promising tool for practical structural evaluation of framed structures subjected to large energy demands.

Development of Ultrafine-Grained Aluminum Tubes Using Severe Plastic Deformation Process (강소성 가공 공정을 이용한 튜브 형상 재료의 결정립 미세화에 대한 연구)

  • Kim, Kyung-Jin;Yoon, Jeong-Whan;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1087-1090
    • /
    • 2009
  • A unique process was developed to improve the mechanical properties of a circular tube. In this proposed process, a large amount of strain is applied to the wall of tube, leading to grain refinement in the material. In order to investigate characteristics of microstructural evolution such as the distribution of grain size and misorientation angle during the process, an EBSD OIM analysis was carried out. The analysis confirms that the proposed process can very effectively produce a circular tube with ultrafine-grains.

Formability of ECAPed Al Alloy Sheet (ECAP한 Al 판재의 판재성형성)

  • Akramov, Saidmurod;Kim, I.;Lee, M.G.;Park, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.285-287
    • /
    • 2006
  • Ultra-fine grained and high hardened Al sheet was obtained by Equal channel angular pressing (ECAP). During this process the microstructure, the hardness and the texture of AA 1050 Al alloy sheet are changed by a severe shear deformation. The plastic strain ratio after the ECAP and subsequent heat-treatment condition has been investigated in this study. It was found that the average r-value of the ECAPed and subsequent heat-treated specimen was 1.7 times higher than those of the initial Al sheet. This could be attributed to the various texture formations through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

  • PDF

Formability of ECAPed Al Alloy Sheet (ECAP 한 알루미늄 판재의 성형성 연구)

  • Akramov, Saidmurod;Kim, In-Soo;Lee, Min-Gu;Park, Byung-Hyun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.88-91
    • /
    • 2006
  • Ultra-fine grained and high hardened Al sheet was obtained by Equal Channel Angular Pressing (ECAP). During this process the microstructure, the hardness and the texture of AA 1050 Al alloy sheet are changed by a severe shear deformation. The plastic strain ratio after the ECAP and subsequent heat-treatment condition was investigated in this study. It was found that the average r-value of the equal channel angular pressed and subsequent heat-treated specimen was 1.7 times higher than that of the initial Al sheet. This could be attributed to the various texture formations through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheets.

  • PDF

DOE approach in the FE Simulation of Liner Forging Process (실험계획법을 적용한 라이너 단조 공정의 유한요소해석)

  • Kim, Y.G.;Kang, G.P.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.356-362
    • /
    • 2018
  • A liner is a crucial component that directly affects the penetration performance of the shaped charge warhead. If the material of the liner has fine grain size and high strength, then the penetration performance can be further improved. There have been attempts to use a preform obtained by a severe plastic deformation (SPD) process. In this study, the process of minimizing the strain deviation to maintain the characteristics of material obtained by the severe plastic deformation process was investigated. The FE analysis of liner forging process was performed using the design of experiments (DOE), to optimize various shape parameters of the forming process such as shape of preform and forging die. As a result, the combination of design variables with the minimum effective strain deviation in the liner forging process were obtained.

Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region (나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정)

  • An, SeongBin;Kim, ChungSeok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part I - Material constitutive modeling

  • Eui-Kyun Park;Ji-Su Kim;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4146-4158
    • /
    • 2023
  • This paper proposes a combined plastic and creep constitutive model of A533B1 pressure vessel steel to simulate progressive deformation of nuclear pressure vessels under severe accident conditions. To develop the model, recent tensile test data covering a wide range of temperatures (from RT to 1,100 ℃) and strain rates (from 0.001%/s to 1.0%/s) was used. Comparison with experimental data confirms that the proposed combined plastic and creep model can well reflect effects of temperature and strain rate on tensile behaviour up to failure. In the companion paper (Part II), the proposed model will be used to simulate OECD lower head failure (OLHF) test data.

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Residual Stress Analysis of Rot Rolled Strip in Coiling Process (권취 공정 중 열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재곤;황상무
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.302-307
    • /
    • 2003
  • Hot rolled strip is cooled by air and water in Run-Out-Table. In this process, phase transformation and shape deformation occurs due to temperature drop. Because of un-ideal cooling condition of ROT, irregular shape deformation and phase transformation arise in the strip. which affect the strip property and lead to the residual stress of strip. And these exert effects on the following processes, coiling process, coil cooling process, and re-coiling process. Through these processes, the residual stress becomes higher and severe. For the prediction of residual stress distribution and shape deformation of final product, Finite element(FE) based model was used. It consists of non-steady state heat transfer analysis, elasto-plastic analysis. thermodynamic analysis and phase transformation kinetics. Successive FEM simulation were applied from ROT process to coil cooling process. In each process simulation, previous process simulation results were used for the next process simulation. The simulation results were matched well with the experimental results.