• 제목/요약/키워드: Severe Accident

검색결과 656건 처리시간 0.025초

Estimation of In-plant Source Term Release Behaviors from Fukushima Daiichi Reactor Cores by Forward Method and Comparison with Reverse Method

  • Kim, Tae-Woon;Rhee, Bo-Wook;Song, Jin-Ho;Kim, Sung-Il;Ha, Kwang-Soon
    • Journal of Radiation Protection and Research
    • /
    • 제42권2호
    • /
    • pp.114-129
    • /
    • 2017
  • Background: The purpose of this paper is to confirm the event timings and the magnitude of fission product aerosol release from the Fukushima accident. Over a few hundreds of technical papers have been published on the environmental impact of Fukushima Daiichi accident since the accident occurred on March 11, 2011. However, most of the research used reverse or inverse method based on the monitoring of activities in the remote places and only few papers attempted to estimate the release of fission products from individual reactor core or from individual spent fuel pool. Severe accident analysis code can be used to estimate the radioactive release from which reactor core and from which radionuclide the peaks in monitoring points can be generated. Materials and Methods: The basic material used for this study are the initial core inventory obtained from the report JAEA-Data/Code 2012-018 and the given accident scenarios provided by Japanese Government or Tokyo Electric Power Company (TEPCO) in official reports. In this research a forward method using severe accident progression code is used as it might be useful for justifying the results of reverse or inverse method or vice versa. Results and Discussion: The release timing and amounts to the environment are estimated for volatile radioactive fission products such as noble gases, cesium, iodine, and tellurium up to 184 hours (about 7.7 days) after earthquake occurs. The in-plant fission product behaviors and release characteristics to environment are estimated using the severe accident progression analysis code, MELCOR, for Fukushima Daiichi accident. These results are compared with other research results which are summarized in UNSCEAR 2013 Report and other technical papers. Also it may provide the physically based arguments for justifying or suspecting the rationale for the scenarios provided in open literature. Conclusion: The estimated results by MELCOR code simulation of this study indicate that the release amount of volatile fission products to environment from Units 1, 2, and 3 cores is well within the range estimated by the reverse or inverse method, which are summarized in UNSCEAR 2013 report. But this does not necessarily mean that these two approaches are consistent.

Development of mechanistic cladding rupture model for severe accident analysis and application in PHEBUS FPT3 experiment

  • Gao, Pengcheng;Zhang, Bin;Li, Jishen;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.138-151
    • /
    • 2022
  • Cladding ballooning and rupture are the important phenomena at the early stage of a severe accident. Most severe accident analysis codes determine the cladding rupture based on simple parameter models. In this paper, a FRTMB module was developed using the thermal-mechanical model to analyze the fuel mechanical behavior. The purpose is to judge the cladding rupture with the severe accident analysis code. The FRTMB module was integrated into the self-developed severe accident analysis code ISAA to simulate the PHEBUS FPT3 experiment. The predicted rupture time and temperature of the cladding were basically consistent with the measured values, which verified the correctness and effectiveness of the FRTMB module. The results showed that the rising of gas pressure in the fuel rod and high temperature led to cladding ballooning. Consequently, the cladding hoop strain exceeded the strain limit, and the cladding burst. The developed FRTMB module can be applied not only to rod-type fuel, but also to plate-type fuel and other types of reactor fuel rods. Moreover, the FRTMB module can improve the channel blockage model of ISAA code and make contributions to analyzing the effect of clad ballooning on transient and subsequent parts of core degradation.

Severe Accident Analysis for Wolsung Nuclear Power Plants

  • Kwon, Jong-Jooh;Kim, Myung-Ki;Park, Byoung-Chul;Kim, Inn-Seock;Hong, Sung-Yull
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.464-470
    • /
    • 1997
  • Severe accident analysis has been performed for the Wolsung nuclear power plants in Korea to investigate severe accident phenomena of CANDU-600 reactors as a part of Level II PSA study. The accident sequence analyzed in this paper is loss of active heat sinks(LOAH) which is caused by loss of off-site power, diesel generators, and DC power. ISAAC (Integrated Severe Accident Analysis Code)computer code developed by KAERI (Korea Atomic Energy Research Institute) was used in this analysis. This paper describes the important thermal-hydraulics and source term behaviors in the primary system and inside containment, and the failure mechanism of calandria vessel and containment. In addition, some insights for accident management program(AMP) are also given.

  • PDF

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

Machine learning-based categorization of source terms for risk assessment of nuclear power plants

  • Jin, Kyungho;Cho, Jaehyun;Kim, Sung-yeop
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3336-3346
    • /
    • 2022
  • In general, a number of severe accident scenarios derived from Level 2 probabilistic safety assessment (PSA) are typically grouped into several categories to efficiently evaluate their potential impacts on the public with the assumption that scenarios within the same group have similar source term characteristics. To date, however, grouping by similar source terms has been completely reliant on qualitative methods such as logical trees or expert judgements. Recently, an exhaustive simulation approach has been developed to provide quantitative information on the source terms of a large number of severe accident scenarios. With this motivation, this paper proposes a machine learning-based categorization method based on exhaustive simulation for grouping scenarios with similar accident consequences. The proposed method employs clustering with an autoencoder for grouping unlabeled scenarios after dimensionality reductions and feature extractions from the source term data. To validate the suggested method, source term data for 658 severe accident scenarios were used. Results confirmed that the proposed method successfully characterized the severe accident scenarios with similar behavior more precisely than the conventional grouping method.

원자력발전소의 냉각재상실사고 특성DB를 활용한 중대사고 관리체계연구 (A Study on Severe Accident Management Scheme using LOCA Sequence Database System)

  • 최영;박종호
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.172-178
    • /
    • 2014
  • In terms of an accident management, the cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results since the Three Mile Island (TMI) accident. The objectives of this paper are to explain how to identify the plant response and cope with its vulnerabilities using the probabilistic safety assessment (PSA) quantified results and severe accident database SARDB(Severe Accident Risk Data Bank) based on sequences analysis results. Although PSA has been performed for the Korean Standard Power Plants (KSNPs), and that it considered the necessary sequences for an assessment of the containment integrity. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by a knowledge-based technique, and the expected plant behaviour. The plant model used in this paper is oriented to the cases of loss of coolant accident (LOCA) is be used as a training simulator for a severe accident management.

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

중대재해처벌법 시행에 따른 안전보건경영시스템 개선방안 연구 - H건설사 중심 (A Study on the Safety and Health Management System Improvement Plan according to the Implementation of the Serious Accident Punishment Act - Focused on H Construction Company)

  • 최광은
    • 한국재난정보학회 논문집
    • /
    • 제19권2호
    • /
    • pp.372-382
    • /
    • 2023
  • 연구목적: 중대재해처벌법 시행에 따른 건설사 안전 관리 시스템 개선 방안을 제시한다. 연구방법: H건설사에서 이행 중인 중대 재해 처벌 법 대응 방안에 대한 안전보건관리체계를 안전보건진단을 통해 실무중심의 재해 예방활동의 효과를 분석하였다. 연구결과: 중대재해처벌법과 안전보건경영시스템의 연계로 재해율 감소 효과 및 안전보건경영 체계의 고도화 등이 분석되었고 중대재해처벌법 시행 전·후의 안전 활동 종합결과 분석을 통한 안전보건경영시스템 개선방안을 제시하였다. 결론: 중대재해처벌법 시행에 따른 사업주의 의식 개선, 재해예방을 위한 투자 확대, 재해예방활동의 정량화 등을 통한 실질적인 성과측정의 효과가 발현되었다.

Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Rahgoshay, Mohammad;Sayareh, Reza;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.975-981
    • /
    • 2016
  • The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

노내계측계통 상부탑재에 의한 중대사고 대처 영향 (Effect of Top-Mounted ICI on Severe-Accident Mitigation)

  • 서정수;김한곤
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권3호
    • /
    • pp.209-215
    • /
    • 2015
  • 노내계측계통의 설치 위치 및 케이블의 관통위치가 중대사고 대처계통에 미치는 영향을 노내 노심용융물 억류 및 원자로용기 외벽냉각 전략과 노외 노심용융물 냉각계통을 중심으로 조사하였다. 기존에 국내원전에서 주로 사용되었던 노내계측계통의 원자로 용기 하부탑재 및 ICI케이블의 원자로 용기하부 관통이 중대사고에 미치는 영향을 정리하고, 이러한 단점을 개선하기 위해 노내계측계통의 ICI 케이블이 원자로 용기 상부를 관통하는 상부탑재 노내계측계통의 장점을 기술하였다.