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a b s t r a c t

In general, a number of severe accident scenarios derived from Level 2 probabilistic safety assessment
(PSA) are typically grouped into several categories to efficiently evaluate their potential impacts on the
public with the assumption that scenarios within the same group have similar source term character-
istics. To date, however, grouping by similar source terms has been completely reliant on qualitative
methods such as logical trees or expert judgements. Recently, an exhaustive simulation approach has
been developed to provide quantitative information on the source terms of a large number of severe
accident scenarios. With this motivation, this paper proposes a machine learning-based categorization
method based on exhaustive simulation for grouping scenarios with similar accident consequences. The
proposed method employs clustering with an autoencoder for grouping unlabeled scenarios after
dimensionality reductions and feature extractions from the source term data. To validate the suggested
method, source term data for 658 severe accident scenarios were used. Results confirmed that the
proposed method successfully characterized the severe accident scenarios with similar behavior more
precisely than the conventional grouping method.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Probabilistic safety assessment (PSA) is an effective tool for the
risk assessment of nuclear power plants (NPPs). Since risk is
defined as the product of frequency and consequence for a given
scenario [1], the results of PSA for NPPs cover information on how
often severe accidents occur and how the accidents impact the
public. In order to evaluate such information systematically, PSA is
divided into three levels [2]; Level 1 PSA focuses on whether a
reactor core is damaged or not when an initiating event occurs. If
damaged, the severe accident (SA) scenarios for the given core
damage case are identified to quantify the probabilities of
containment failures in Level 2 PSA. In addition, the types and
amounts of radioactive materials released to the environment (i.e.,
source terms) are also evaluated in the same phase. In Level 3 PSA,
the impacts on the public as the consequence of the accident (e.g.,
early or late fatality) are estimated using the source terms derived
in Level 2 PSA. In sum, the risks of NPPs are composed of SA sce-
narios, accident frequencies, and accident consequences.
by Elsevier Korea LLC. This is an
In particular, Level 2 PSA plays an important role in overall PSA
as it addresses the source terms of accidents, which are closely
related to the accident consequence, as well as the frequency of
accidents [3]. For example, Level 2 PSA can provide surrogate
metrics such as large early release frequency (LERF) [4] by identi-
fying a number of SA scenarios based on a logical event tree
approach. In addition, the amount of hazardous materials that will
be released to the environment for a given SA scenario can also be
estimated through source term analysis codes. As these elements
cover all components of risk (i.e., scenario, frequency, and conse-
quence), it is important to reduce the uncertainties in Level 2 PSA as
much as possible to improve the overall risk quantification results
for NPPs.

However, the results of Level 2 PSA in reality involve a lot of
uncertainties due to the lack of data and to the reduction of model
sizes to save analysis costs. For example, source term analysis for a
limited number of SA scenarios has been performed to reduce the
computational burden. In other words, before analyzing the source
terms, a number of SA scenarios are grouped into several categories
by qualitative logical trees or expert judgements to sort out similar
source term characteristics without quantitative information [5,6]
(Fig. 1, upper panel). After this categorization, source term analysis
is implemented for only one representative scenario of each source
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Fig. 1. Comparison between conventional STC grouping and the proposed STC grouping based on the exhaustive simulation approach.
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term category (STC). Accident consequence analysis is likewise
limited to one case because each STC has just one source term data.

For this reason, the categorizationmethodand itsperformanceare
significantly important for risk quantification. Clearly, the higher the
similarity between the scenarios within an STC, the more advanta-
geous the method. However, as shown in Fig. 1, the current catego-
rization scheme has a contradiction in that SA scenarios are grouped
before analyzing their source terms. While the objective of the cate-
gorization is to make SA scenarios within the same category have
similar source term characteristics, the problem is that there is no
available data about the source termswhile categorizing because the
source term analysis is carried out after the categorization. If dis-
similar scenariosendup in thesamegroup fromincorrect logical trees
or expert judgments, the results of risk quantification will involve
significantuncertainties. Unfortunately, noevaluationhasbeenmade
on the grouping performance of these quantitative methods.

Recently, the Korea Atomic Energy Research Institute (KAERI)
proposed an exhaustive simulation approach [7] to carry out source
term analysis not for a limited number of SA scenarios but for all
scenarios (Fig. 1, lower panel). For this purpose, a program called
Module for Exhaustive Scenarios-based Severe Accident input
Generation (MESSAGE) was developed. The MESSAGE program can
automatically read Level 2 PSA event treemodels regardless of their
size and generate a large number of input files for a source term
analysis code such as Modular Accident Analysis Program (MAAP5)
[8]. With MESSAGE, we can now analyze the source terms for
numerous SA scenarios instead of just one representative scenario.

Thanks to such exhaustive simulation, a source term database
for a large number of SA scenarios can be constructed. Hence, it is
now possible to quantitatively categorize SA scenarios into several
groups having similar characteristics. In Level 3 PSA, categorizing
source terms is also beneficial for analyzing and interpreting a large
amount of datamore efficiently. With the source term database and
quantitative categorization method, it is expected that more real-
istic results of risk assessment can be derived because similar
source term characteristics are likely related to similar accident
consequences.
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Therefore, with the source term database, this paper proposes a
machine learning-based categorization method to improve
grouping performance and handle a large number of data effi-
ciently (Fig. 1, lower panel). Because the source terms have no
specific distinction for categorization, a clustering approach, which
is a typical unsupervised learning method in the field of machine
learning [9,10], was employed. Clustering is a method of grouping
by determining the similarity between data when data labeling is
not given. To improve the quality of clustering, an autoencoder
structure [11e13] was introduced to perform a dimensionality
reduction of the time series data before clustering.

This paper is organized as follows. Section 2 describes the lim-
itations of conventional categorization and introduces the machine
learning-based categorization method. Section 3 shows the appli-
cation results of the proposed method to the Optimized Power
Reactor 1000 (OPR1000) Level 2 PSAmodel. Section 4 and Section 5
present our discussion and conclusion, respectively.
2. Categorization of source terms in level 2 PSA

2.1. Limitations of the conventional categorization method

In general, the risk of NPPs can be quantified using the fre-
quency and consequence of each SA scenario as follows:

RTotal ¼
XN
i¼1

Fi � Ci; (1)

where RTotal is the total risk of the target NPP, and Fi and Ci are the
frequency and consequence of the i-th SA scenario, respectively. SA
scenarios can be identified from the core damage scenarios in Level
1 PSA considering SA progression. The number of SA scenarios N is
generally in the thousands to several hundred thousand. Once the
SA scenarios are identified, Fi can be evaluated using the probability
of SA phenomena and the given core damage frequency.



Fig. 3. Time-dependent release fraction characteristics in the conventional STC-17.
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Prior to the quantification of consequences, source terms for a
given SA scenario are first evaluated through a source term analysis
code. If the types and amount of radioactivematerial released to the
environment are determined in Level 2 PSA, Ci can be estimated by
considering how the hazardous materials are dispersed and how
the public will evacuate in Level 3 PSA.

As mentioned in the Introduction, conventional PSA has
employed the concept of grouping similar scenarios for saving
analysis costs. In other words, source term analysis for a limited
number of SA scenarios has been performed. ForN SA scenarios, the
conventional categorization method constructs a qualitative logical
tree to assign similar scenarios to specific STCs based on the SA
process and expert judgements, as shown in Fig. 2. In Ref. [14], the
key attributes in specifying STCs are summarized. Here, the
numbers of logics and categories completely depend on the
experts.

Each STC in Fig. 2 can include at least one SA scenario. After this
categorization, the total N SA scenarios are grouped into m STCs.
The scenario with the highest frequency of each STC is generally
selected as the representative scenario and their source terms are
evaluated. Therefore, m analyses of source terms are performed. In
this case, the approximated risk of NPPs can be estimated using Eq.
(2):

RTotal ¼
Xm
k¼1

ðCk�
Xvk
j¼1

Fkj Þ; (2)

where vk is the number of SA scenarios in the k-th STC, therefore
Pm
k¼1

vk ¼ N. Ck is the consequence of the representative scenario in

the k-th STC, and Fkj is the frequency of the j-th SA scenario in the k-

th STC. This categorization approach has the advantage of being
able to obtain an approximation of the risk with a smaller number
of source terms/consequence analyses if the scenarios with similar
accident consequences are well characterized. Accordingly, the
categorizationmethod has played an important role in reducing the
uncertainties in risk quantifications.

Despite its advantages, the conventional categorization method
shown in Fig. 2 involves a lot of uncertainties for risk quantification
via Eq. (2) because it labels scenarios in a qualitative way without
quantitative source term data. The categorization is therefore
inevitably limited because each logic explains only a few discrete
branches. If the logic itself is designed incorrectly, the similarity
among SA scenarios within an STC cannot be guaranteed.

According to exhaustive simulation [7], it was discovered that
the conventional categorization method caused significant differ-
ences in the release amount of Cs-137within the same category. Cs-
137 is known as a major contributor to off-site consequences [15],
and therefore it can be said that the results of risk quantification
Fig. 2. Example of the conventional categ
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using Eq. (2) with the conventional method are uncertain. In order
to visualize the uncertainties in the conventional categorization
method, the time-dependent release fractions of a radioactive
material, which is closely related to the Cs-137 release amount, are
represented in Fig. 3 using the source term data derived from
exhaustive simulation.

Fig. 3 shows the release fractions of the SA scenarios belonging
to the last category out of a total of 17 categories. A total of 30 SA
scenarios are included in STC-17. As shown in Fig. 3, it turned out
that the conventional method incorrectly labeled the SA scenarios.
Comparing the end points between the scenarios within STC-17,
one can see that they are totally different. Moreover, they also
differ in the initial release time, which is another key factor in
determining off-site consequences [2]. If the analysis of off-site
consequences is performed in such a situation where there is a
large deviation in themajor attributes within a group, it is clear that
the final risk assessment result using Eq. (2) may contain consid-
erable uncertainty.

2.2. Construction of a source term database

2.2.1. Source term database using the exhaustive simulation
To construct a source term database for a large number of SA

scenarios, KAERI proposed the concept of exhaustive simulation [7].
This approach aims to support source term analysis through an
automated program called MESSAGE, which can read and interpret
Level 2 PSA models and automatically generate numerous input
orization of source terms (N [ m).



Table 1
Summary of the source term database from exhaustive simulation.

No. SA scenarios N ¼ 690

Si ¼

2
6664
xð1Þ1 / xð18Þ1
« 1 «

xð1Þti / xð18Þti

3
7775

Notation of i-th SA
scenario

Si; i ¼ 1, 2, 3, …, N

Type of data Time-dependent release
fraction, xti

No. variables d ¼ 18
Sequence length Variable length (tiÞ

(Min: 574, max: 2194)
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files for MAAP5 suitable for each SA scenario. The MESSAGE pro-
gram is composed of the following: (i) an input library module that
reads the Level 2 PSA model, (ii) a scenario identification module
that sorts out the SA scenarios with non-zero frequency, and (iii) an
input generation module that generates input files based on the SA
scenarios.

From exhaustive simulation with the MESSAGE code, KAERI
constructed a source term database for the OPR1000. Specifically,
the source terms for a total of 690 SA scenarios were analyzed. The
reasonwhy the number of analysis scenarios was selected as 690 is
that these selected SA scenarios occupied 99% of total accident
frequency. In other words, SA scenarios with very low frequency
that seldom contribute to risk quantification were excluded. The
selected SA scenarios were analyzed for 72 h, with the source term
data of each scenario consisting of the time-dependent release
fraction of 18 radioactive materials. It should be noted that each
scenario has a different sequence length. Table 1 shows a summary
of the source term database constructed using exhaustive
simulation.

2.2.2. Consequence analysis with the source term database
While the source terms for numerous SA scenarios can be

evaluated through the exhaustive simulation approach, for risk
quantification, it is essential to perform accident consequence
analysis with the obtained source term data. It seems desirable to
analyze the consequences for numerous SA scenarios to reduce the
uncertainty of the quantification results as much as possible. For
this purpose, KAERI developed automation programs for conse-
quence analysis in Level 3 PSA called Multi Unit Source Term
(MUST) converter [16] and Mr. (Multi-run) manager [17], similar to
theMESSAGE code developed for Level 2 PSA.With these programs,
more accurate risk can be quantified using Eq. (1).

Although consequence analysis for a large number of scenarios
can now be accomplished with the dedicated programs, it becomes
more difficult to efficiently gain risk insights from the massive
amounts of data as the number of SA scenarios increases. In this
context, categorizing similar scenarios is still useful to carry out
comprehensive PSA incorporating Level 3 PSA. If the similarity of
the accident consequence between scenarios is guaranteed, the
uncertainty in Eq. (2) can be reduced. For that reason, this paper
proposes a quantitative categorization method by introducing a
machine learning technique to enhance the grouping performance
and effectively handle large amounts of data.

2.3. Machine learning-based source term categorization

In order to quantitatively group SA scenarios using the source
term database, two methods can be considered: classification or
clustering. Classification, which is a typical supervised learning
method, is used when the number of classes is known. On the other
hand, if data labels are not predefined, an unsupervised learning
method such as clustering should be employed. Clustering enables
grouping based on similarity between data without specific
distinctions.
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However, as described in Table 1, the source term data is
multivariate and time-dependent. It is difficult to discriminate such
complex data using conventional qualitative methods such as a
logical tree. Even though a quantitative grouping method is now
available, the high dimensionality of the data may lead to the
degradation of grouping performance. This is known as the curse of
dimensionality.

This paper employs a clustering algorithm since the source term
data have no specific labels (i.e., it is not knownwhich category the
nth SA scenario should belong to). In addition, a dimensionality
reduction technique is also incorporated into the proposed
framework. Specifically, an autoencoder, known as an unsupervised
learning method, is introduced before clustering. Fig. 4 shows the
proposed framework for machine-learning-based source term
categorization.

When SA scenarios are successfully categorized by the proposed
method, the similarity of their accident consequence can also be
guaranteed. If so, the uncertainty in risk quantification using Eq. (2)
can be reduced.

2.3.1. Autoencoder for dimensionality reduction and feature
extraction

The source term data is composed of the time-dependent
release fraction of the radioactive materials. In order to perform
clustering using such time series data, two major methods can be
applied. The first is to utilize the time series data as it is to deter-
mine the similarity between scenarios and group them through a
clustering algorithm based on this similarity. The Euclidean dis-
tance and dynamic time warping (DTW) [18] methods are widely
used to calculate the similarity between time series data. In
particular, DTW is commonly used when the sequence length is
different. In this case, the similarity can be calculated without data
loss; however, it is difficult to calculate the similarity between data
when the time series data is of high dimensionality. This is known
as the curse of dimensionality. In addition, calculating the similarity
of data with high dimensionality via DTW takes a considerable
amount of time.

Oneway to avoid the curse of dimensionality is to reduce the data
dimension and extract the major features from the time series data.
Clustering is thenperformed on this compressed data. Although this
method is likely to involve some information losswhile compressing
the data, the similarity can be simply calculated using the Euclidean
distance, and it is more efficient to gain good clustering results
rather than using high dimensionality data as it is [19].

In this paper, a dimensionality reduction method is employed to
effectively analyze the complex source term data. It should be
noted that there are various dimensionality reduction methods,
such as principal component analysis (PCA). Since this paper does
not focus on finding the optimal dimensionality reduction method
but rather on proposing a source term categorization framework,
an autoencoder structure, which is widely used to reduce the di-
mensions of multivariate time-series data, is simply adopted. An
autoencoder is an ANN-based structure composed of an encoder
and decoder. While most applications of ANN-based structures are
developed for supervised learning, an autoencoder is a typical
unsupervised learning method because the decoder reconstructs
the original input data. Through unsupervised learning, it encodes
the input time series data and decodes it to reconstruct the encoded
data. After training the autoencoder, only the encoder is used to
generate the compressed data. Dimensionality reductions and
feature extractions are implemented in the encoder. Fig. 5 shows an
example of an autoencoder with ANN structure.

In the autoencoder in Fig. 5, the input layer receives time series
data (Si) as input. This sequential data is compressed while passing
through the hidden layers. It is common to set the number of nodes



Fig. 4. Framework of machine learning-based source term categorization.

Fig. 5. Example of the autoencoder structure.
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in the current hidden layer to a smaller number than that of the
previous layer. Then in the final hidden layer of the encoder, the
number of nodes k is defined by the desired dimension. The
dimension of the original time series data ðN�t�dÞ can be reduced
to ðN�kÞ after encoding. The compressed data can be represented
as follows:

L¼

2
6664
lð1Þ1 / lðkÞ1
« 1 «

lð1ÞN / lðkÞN

3
7775 (3)
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The decoder receives the dimensionally reduced data L, which is

the output of the encoder, and reconstructs the inputs cx11 ; cx12 ;…;
cxdti .

The number of nodes and layers in the decoder is usually sym-
metric with the encoder.

The autoencoder can compress time series data and reduce the
dimensionwhile learning theweights of the layers so that the input
and 006Futput are derived identically. The number of layers and
nodes, which are hyper-parameters, in the encoder and decoder is
naturally determined while training the model. It should be noted
that the compressed data L contains the key features of the time
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series data. In other words, it is sufficient to describe the source

term data of the 1st scenario S1 in terms of L1 ¼ flð1Þ1 ; lð2Þ1 ;…; lðkÞ1 }
because the key characteristics of the time series data, such as the
final release fraction or the initial release point, are well summa-
rized in L1. Detailed descriptions on how to train the autoencoder
model are omitted in this paper because it is equal to fitting an ANN
structure, which is well established [10,20].
2.3.2. Clustering for categorization of source terms
Once the dimension of the time series data is successfully

reduced using the autoencoder, SA scenarios with similar behavior
can be easily characterized through the clustering method. Clus-
tering is a way of grouping similar data based on their similarity or
dissimilarity without a specific distinction. There are various
methods of clustering according to how to calculate the similarity
and how to group the similarity data [21,22]. For example, hierar-
chical clustering, which is a connectivity model, and the k-means
algorithm as a partition model are widely used for clustering. K-
medoids, also known as partitioning around medoids (PAM), is also
popular because it is not sensitive to outliers. The PAM clustering
algorithm used in Section 3 of this paper is briefly introduced as
follows.

PAM is a partitional clustering method based onmedoids. While
the k-means algorithm uses the mean distance of the data points
within a cluster as a centroid, PAM selects a real data point as a
medoid. When the number of clusters nc is determined, nc data
points are randomly selected as the medoids. After calculating the
similarity between the data points and the medoids, each data
point is assigned to its nearest medoids. Next, newmedoids, which
are not identical to the previous medoids, are selected. The simi-
larities between the data points and the new medoids are calcu-
lated again and the cost of each medoid is evaluated. These steps
are repeated until the difference in the cost does not decrease. The
clustering procedure with the compressed data L and PAM is
summarized in Table 2.

As shown in Table 2, most clustering algorithms require nc
before performing clustering because of unsupervised learning. In
the same context, it is generally necessary to apply various clus-
tering methods to the same data to determine the optimal clus-
tering method, although only the PAM algorithm is introduced
here. There are various measures or methods to find out the
optimal clustering algorithm [23]. For example, the elbow method
is widely used to qualitatively find the optimal number of clusters.
The DavieseBouldin index or Dunn index can also be used to
quantitatively measure clustering performance. Another approach
is to evaluate the silhouette score [24]. This index measures the
similarity of data points for the cluster to which they belong
Table 2
PAM clustering with compressed data L obtained from the autoencoder.

Step PAM algorithm

I Determine nc
II Randomly select nc data points as medoids

U ¼ fu1;u2;…;unc }
III Calculate the similarities between L and U

Assign L to its nearest medoid based on the similarities
IV Select new medoids Unew

Calculate the similarities between L and Unew

Assign L to its nearest medoid based on the similarities
V Calculate the cost1), C

If CU � CUnew < 0,
then U is replaced with Unew

VI Repeat (IV) to (V) until the medoids do not change

1) The cost in step V can be calculated by summing the similarity of each medoid.
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compared to other clusters. The silhouette score of i-th data Sili can
be quantified by:

Sili ¼
bi � ai

maxðbi; aiÞ
; (4)

where bi is the minimum average distance of the i-th data point to
other clusters and ai is the average distance within the cluster to
which it belongs. This score is between [e1, 1]. The closer the value
is to 1, the better the clustering is. On the other hand, a score of �1
indicates that the data belongs to the wrong cluster. The average
score of all Sili can be interpreted as the performance of clustering.

3. Application results for the OPR1000

This section describes the major results of an application of both
the conventional grouping approach and the clustering approach to
an OPR1000 full-power internal event PSA model. The PSA models
are taken from multi-unit PSA research by KAERI [6,25]. Section 3.1
summarizes the results from the conventional grouping approach,
and Section 3.2 describes the application results of the clustering
approach suggested in this study.

3.1. Conventional grouping approach

Note that the results described in this section were taken from
Refs. [7]. Fig. 6 summarizes the STC information using the con-
ventional grouping approach. A total of 17 STCs and 7 containment
failure modes were identified: ECF, LCF, BMT, CFBRB, NOISO
BYPASS, and ISLOCA. The conditional probability of containment
failure given core damage is 41%. Among the containment failure
modes, LCF, CFBRB, and BYPASS are the highest contributors to the
containment failure at 17%, 13%, and 8%, respectively.

Using the exhaustive simulation results, distributions of the
amount of Cs-137 release for the 17 STCs were obtained as shown in
Fig. 7. Considering that there were significant differences among
the data from STCs 6, 11, and 17, it can be said that the conventional
grouping approach does not combine sufficiently similar scenarios.

3.2. Clustering for categorization of source terms

In this section, the application results of source term categori-
zations for OPR1000 PSA models are described based on the pro-
posed method with the source term database summarized in
Table 1. It should be noted that a total of 658 SA scenarios were used
in this paper, excluding 32 SA scenarios that are difficult to use for
clustering (e.g., most of them have a value of zero).

Before reducing the dimensionality of the source term data with
the autoencoder, pre-processing was carried out so that the lengths
of the time series data are identical. The sequence length of all
scenarios was preprocessed by padding the last release fraction
value of each scenario to the sequence of the maximum length
because the release fraction always increases over time. Therefore,
all ti after preprocessing have a maximum length of 2194.

According to Refs. [15,26], Cs-137 is known as a major contrib-
utor to accident consequence analysis. Variables 2, 6, and 16 among
the 18 variables in the source term data are closely related with the
release amount of Cs-137; these variables include the release
fractions of CsI, CsOH, and Cs2MoO4, respectively [26]. Therefore,
instead of using all variables, this paper used these three variables
to make the clustering result more highly associated with not only
source terms but also consequences. This approach can also lead to
a simplification of the autoencoder structure. Accordingly, the
number of nodes in the input layer of the autoencoder was 6,582
(2194 x 3).



Fig. 6. STC results using the traditional grouping approach.
NOCF: no containment failure, ECF: early containment failure, LCF: late containment failure, BMT: basement melt-through, CFBRB: containment failure before reactor vessel breach,
NOISO: containment isolation failure, BYPASS: containment bypass, ISLOCA: interfacing system loss of coolant accident (taken from Refs. [7]).

Fig. 7. Box plot results for the amount of Cs-137 release for 17 STCs defined from
conventional grouping approach (taken from Refs. [7]).

Table 3
Average silhouette scores by clustering method.

Hierarchical
clustering

K-means
clustering

PAM
clustering

Avg. silhouette
score

0.77 0.69 0.79

Table 4
Configurations and hyper-parameters used in the proposed method.

Configurations or hyper-parameters

Encoder Input layer: 6,582 nodes
Hidden layer 1: 3,000 nodes
Hidden layer 2: 500 nodes
Hidden layer 3: 5 nodes (Output layer of the encoder)

Decoder Hidden layer 4: 5 nodes
Hidden layer 5: 500 nodes
Hidden layer 6: 3,000 nodes
Output layer: 6,582 nodes (Reconstruction of inputs)

Dimension of L 5
Optimization method Adam (learning rate ¼ 5.0E-05)
Clustering method PAM algorithm
Similarity Euclidean distance
Number of clusters 17
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When compressing the input data to obtain the key features of
each scenario, it is essential to determine the dimension size k of
the compressed data L. If k is too high, the performance of clus-
tering may deteriorate due to the curse of dimensionality.
Conversely, the compressed data cannot capture the key features of
the time series data when k is too low. Therefore, kwas empirically
determined in this paper so that the output layer of the encoder has
5 dimensions.

In terms of Eq. (2), uncertainties of risk quantification definitely
decrease as the number of categories increases. Therefore, it can be
assumed that finding the optimal number of clusters in a given
problem is not critical to the results of categorization; the higher
the number of clusters, the better the risk quantification results. For
this reason, the number of clusters nc was simply set to 17, which is
equal to the number of conventional STCs for a comparison of the
results. A sensitivity analysis depending on nc is discussed in Sec-
tion 4. In order to determine the optimal clustering method, the
silhouette scores for three clustering methods were evaluated at
nc ¼ 17.

Based on the results shown in Table 3, the PAM algorithm was
employed as the clustering method in the current study. It should
be noted that the optimal clusteringmethod can vary depending on
the number of clusters or the means to reduce the dimension of the
data. Table 4 summarizes the key configurations and hyper-
3342
parameters used for the applications.
Before examining the similarity of accident consequences

within a group, the similarities of the raw data were confirmed.
Fig. 8(a)-(c) show the release fraction of variable 2 (CsI) over time
for machine learning-based STC-d, g, h, respectively. It should be
noted that while both methods have the same number of cate-
gories, there are no relationships between the categories in the
conventional method and the proposed method. For this reason,
the proposed STCs were denoted in alphabetical order to clearly
compare the results.

The numbers in Fig. 8 indicate the scenario number for a total
658 scenarios. Compared to Fig. 3, it can be seen that the grouping
was well performed as the scenarios show a similar behavior for
each STC. The scenarios belonging to each STC have a similar release
amount (end point) and initial release point. In addition, the source
term behaviors among SA scenarios are clearly discriminated. To
quantitatively compare the categorization results, the average of
the silhouette scores for the total 658 SA scenarios was evaluated
using the conventional STC and proposed STC method through Eq.
(4), as shown in Table 5. Note that the silhouette value was scored
from the compressed data L for both methods.

From the result in Table 5, it can be concluded once again that
the conventional method should be improved since its averaged
silhouette score is negative. Compared to the conventional method,



Fig. 8. Results of machine learning-based STC: release fract ion of variable 2 in (a) STC-
d, (b) STC-g, (c) STC-h.
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the proposed method well categorized the source term data. It can
be concluded that the proposed method provides enough
3343
resolution to discriminate the source term behaviors since the
average silhouette score is about 0.8. Based on the categorization
results, the similarities of the accident consequences were
confirmed, as presented in the next section.
3.3. Validation of clustering results with consequence analysis

Although it was confirmed that similar source terms were well
characterized in Section 3.2, it is also necessary to verify the simi-
larity of the accident consequences within the groups to reduce the
uncertainty of risk quantification through Eq. (2). For verification,
five scenarios for each category were randomly selected and their
accident consequences were analyzed through MACCS [27]. In
cases where the number of scenarios belonging to each category
was less than five, accident consequence analysis was performed
for the number of scenarios of that category.

Reference site installing OPR1000 was considered in the MACCS
analyses incorporating emergency responses such as sheltering,
evacuation, and dose-dependent relocation. Long-term health ef-
fects using CHRONC module were also evaluated and included in
the estimation of total consequence results. Similar to the conse-
quence metrics of state-of-the-art consequence analyses (SOARCA)
project [28], population weighted individual risk (PWIR) of cancer
fatality is employed as a consequence metrics since early fatality
seldom occurs in the offsite consequence analysis of OPR1000.

Fig. 9 shows the results of the similarity of accident conse-
quences for the 17 STCs depending on the categorization method,
i.e., conventional STC and the proposed method. In the figure, the
values of the PWIR are normalized between zero to one; they are
expressed as red points alongwith the scenario number assigned to
each STC, with the minimum and maximum values also indicated.

The numbers in Fig. 9 indicate the scenario number for a total
658 scenarios. As Fig. 9 confirms, the conventional STC method
does not guarantee similarity of the accident consequences within
a group. Especially, STC-6, 12, 13, and 17 include large deviations of
consequences, which means that evaluating risks using a repre-
sentative scenario with Eq. (2) can lead to significantly uncertain
results. On the other hand, the proposed method categorized
similar scenarios with less deviation than the conventional one.
The reason why there are overlap regions in the results of the
proposed method is that categorization was not based on the ac-
cident consequence but source terms. In order to confirm the un-
certainty of both categorization methods, the results of risk
quantification through Eq. (2) are compared in the next section
based on the results in Fig. 9.
4. Discussions

In order to quantitatively compare the grouping performance
between STC methods, a metric named grouping convergence in-
dex (GCI) is newly defined in this paper using Eq. (2) as follows:

GCI¼
Pm

k¼1
Pvk

j¼1F
k
j � Ck

maxPm
k¼1

Pvk
j¼1F

k
j � Ck

min

; (5)

where vk is the number of SA scenarios in the k-th STC, Fkj is the

frequency of the j-th SA scenario in the k-th STC, Ck
min and Ck

max is the
minimum and maximum consequence in the k-th STC as the
representative scenario, respectively. If GCI indicates 1, it can be
said that the result of risk quantification using Eq. (2) does not
include uncertainty due to grouping because there is no deviation
in the accident consequence within the group. In other words, the
larger the GCI value, the worse the grouping performance. Table 6



Table 5
Average silhouette score by STC approach.

Conventional STC Proposed STC

Avg. silhouette score �0.44 0.79
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shows the estimation of GCI depending on the STC methods with
the normalized PWIR results derived in Section 3.3 to compare the
grouping performance.

As Table 6 shows, the results are significantly sensitive to the
representative scenario when the risks were approximated based
on the conventional STC method. The risk using the maximum
Fig. 9. Results of consequences analysis grouped by the conven
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consequence was approximately 14 times the risk using the mini-
mum consequence. On the other hand, the proposed method pro-
vided less sensitive results. In this case, the GCI was calculated as
1.44. The two GCI differ by about 10 times. Although the approach
still employs categorization to evaluate the approximated risk, the
proposedmethod can obtainmore robust and less uncertain results
than the conventional method.

As described in Section 3.2, it is obvious that the higher the
number of clusters, the better the risk quantification results. To
confirm this, the risk quantification results depending on the
number of clusters were calculated and tabulated in Table 7. Note
that only the number of clusters was changed in the calculation
with the same procedure as in Table 6.
tional method (upper) and the proposed method (lower).



Table 6
GCI to compare the grouping performance by STC method.

Scenario index (Si) GCI

Conventional STC C1
max; C

2
max;…;C17

max 24, 368, 85, 624, 621, 553, 203, 622, 211, 441, 166, 344, 176, 245, 572, 54, 141 14.0

C1
min; C

2
min;…;C17

min
96, 314, 127, 219, 520, 192, 335, 128, 391, 149, 471, 583, 546, 608, 653, 54, 349

Machine learning-based STC Ca
max; C

b
max;…;Cq

max 304, 412, 5, 38, 617, 602,
566, 344, 553, 157, 273, 627, 317, 256, 365, 456, 572

1.44

Ca
min; C

b
min;…;Cq

min
503, 156, 88, 97, 658, 180, 320, 141, 196, 607, 619, 219, 317, 256, 487, 456, 572

Table 7
Average silhouette score and GCI by number of clusters nc .

No. clusters 7 17 27

Avg. silhouette score 0.78 0.79 0.79
GCI 2.59 1.44 1.37

Fig. 10. Plot of scenarios that have similar consequence but different behavior.
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It can be seen that the averaged silhouette score did not
significantly change as the number of clusters increased. However,
the GCI plainly decreased. If nc is 658 which is equal to the number
of SA scenarios, the GCI will definitely indicate 1. While it is
desirable to allocate a large number of clusters to reduce uncer-
tainty due to grouping, it is also important to select an appropriate
number of clusters to reduce the computational burden.

On the other hand, it is a well-known fact that it is difficult to
interpret and analyze the results as the amount of data increases. The
proposed method may contribute to this legacy issue. One of the
advantages of using the proposedmethod is that intuitive and useful
information can be extracted from a large amount of data by identi-
fying the features of each category. For example, the characteristics of
the source terms of each category in Fig. 8 are apparently discrimi-
native. It is easy to know that the SA scenarios in STC-g will release
more source terms rather than those inSTC-d.While the accumulated
release amounts of the source terms in STC-g and h are similar, SA
scenarios belonging to STC-h will initially release the source terms.

Furthermore, in Fig. 9, take for example that S617 in STC-e and
S120 in STC-g belong to different categories but they have similar
consequence results. The release fraction of variable 2 (CsI) of each
scenario can be plotted in Fig. 10.

As shown in Fig. 10, there may be cases where the behavior of
the source term itself is different even if its accident consequences
3345
are similar. This is not meaningful in terms of risk quantification,
but it should be noted that the ultimate purpose of PSA is not only
to quantify the risk but also to find vulnerabilities for the risk
reduction of NPPs. In this context, Fig. 10 can provide important
information. For example, based on the fact that S617 releases the
source terms at amuch faster time than S120, results can be used for
decision-making to devise accident responses or to prepare miti-
gation measures. Using clustering, important information can be
extracted through the intra-cluster characteristic analysis or inter-
cluster characteristic analysis of a large amount of data.
5. Conclusion

This paper proposed a quantitative source term categorization
method based on machine-learning techniques with the source
term database constructed by exhaustive simulation. The proposed
method employed an autoencoder structure to reduce the data
dimension and extract the key features from the time series data. In
addition, different data lengths were preprocessed to have the
same sequence length, and three variables closely related with Cs-
137 were sorted out to reduce the size of the autoencoder. Finally,
the severe accident scenarios were categorized by the PAM clus-
tering method for the feature data compressed through the
encoder, and it was confirmed that grouping by scenario with
similar source term behavior was well performed in Section 3.2.

To confirm that the proposed method successfully guarantees
not only the similarity of the source term behavior but also that of
the accident consequences, five scenarios for each STC were
randomly selected and their consequences were analyzed using
MACCS code. Fig. 8 showed the similarities of source term behavior
within a category by the proposed method. The similarities of ac-
cident consequences within a category by STC method were qual-
itatively compared in Fig. 9. In addition, the grouping performance
was quantitatively estimated by introducing GCI. As a result, it was
confirmed that the proposed approach has low deviation between
accident consequences within the same group. In terms of GCI, the
proposed method showed about 10 times higher grouping perfor-
mance than the conventional method. Furthermore, it was
confirmed that grouping approach can provide important infor-
mation through the intra or inter-cluster characteristic analysis of a
large amount of data.

In this paper, dimensionality reduction was performed only
through the autoencoder. It is necessary to find a more optimized
method by comparing with additional techniques such as principle
component analysis (PCA) or discrete wavelet transform (DWT).
Furthermore, the proposed method should be verified using the
source term data for various NPPs and more results of accident
consequence analysis.
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