• Title/Summary/Keyword: Setup error

Search Result 201, Processing Time 0.029 seconds

Design of a Timing Error Detector Using Built-In current Sensor (내장형 전류 감지회로를 이용한 타이밍 오류 검출기 설계)

  • Kang, Jang-Hee;Jeong, Han-Chul;Kwak, Chol-Ho;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.12-21
    • /
    • 2004
  • Error control is one of major concerns in many electronic systems. Experience shows that most malfunctions during system operation are caused by transient faults, which often mean abnormal signal delays that may result in violations of circuit element timing constraints. This paper presents a novel CMOS-based concurrent timing error detector that makes a flip-flop to sense and then signal whether its data has been potentially corrupted or not by a setup or hold timing violation. Designed circuit performs a quiescent supply current evaluation to determine timing violation from the input changes in relation to a clock edge. If the input is too close to the clock time, the resulting switching transient current in the detection circuit exceeds a reference threshold at the instant of the clock transition and an error is flagged. The circuit is designed with a $0.25{\mu}m$ standard CMOS technology at a 2.5 V supply voltage. The validity and effectiveness are verified through the HSPICE simulation. The simulation results in this paper shows that designed circuit can be used to detect setup and hold time violations effectively in clocked circuit element.

  • PDF

Low Coherence Interferometer for Measurement of Path Length Errors in Arrayed-Waveguide Grating (Arrayed-Waveguide Grating의 경로 오차 측정을 위한 저 간섭 광원 간섭계)

  • Song, Young-Ki;Heo, Nam-Chun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.539-546
    • /
    • 2004
  • An improved low coherence interferometer system and a new analysis method for the accurate measurement of the optical path difference error of an AWG (Arrayed-Waveguide Grating) are described. The use of software simplifies the experimental setup by eliminating the hardware (clock generator). In addition, the actual distances between the peak positions of the adjacent interference signals are calculated using interpolation methods. The wavelength transmission characteristics of the AWG are calculated assuming the measured phase errors. The calculated AWG characteristic is quite similar to the actual measurement result, confirming accuracy of the proposed measurement setup.

Bit Error Rate measurement of an RSFQ switch by using an automatic error counter (자동 Error counter를 이용한 RSFQ switch 소자의 Bit Error Rate 측정)

  • Kim Se Hoon;Kim Jin Young;Baek Seung Hun;Jung Ku Rak;Hahn Taek Sang;Kang Joon Hee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.21-24
    • /
    • 2005
  • The problem of fluctuation-induced digital errors in a rapid single flux quantum (RSFQ) circuit has been very important issue. So in this experiment, we calculated error rate of RSFQ switch in superconductiyity ALU, The RSFQ switch should have a very low error rate in the optimal bias. We prepared two circuits Placed in parallel. One was a 10 Josephson transmission lines (JTLs) connected in series, and the other was the same circuit but with an RSFQ switch placed in the middle of the 10 JTLs. We used a splitter to feed the same input signal to the both circuits. The outputs of the two circuits were compared with an RSFQ XOR to measure the error rate of the RSFQ switch. By using a computerized bit error rate test setup, we measured the bit error rate of 2.18$\times$$10^{12}$ when the bias to the RSFQ switch was 0.398mh that was quite off from the optimum bias of 0.6mA.

Performance Improvement of a 6-Axis Force-torque Sensor via Novel Electronics and Cross-shaped Double-hole Structure

  • Kang Chul-Goo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.469-476
    • /
    • 2005
  • Performance of a force-torque sensor is affected significantly by an error signal that is included in the sensor signal. The error sources may be classified mainly into two categories: one is a structural error due to inaccuracy of sensor body, and the other is a noise signal existing in sensed information. This paper presents a principle of 6-axis force-torque sensor briefly, a double-hole structure to be able to improve a structural error, and then a signal conditioning to reduce the effect of a noise signal. The validity of the proposed method is investigated through experimental study, which shows that SIN ratio is improved significantly in our experimental setup, and the sensor can be implemented cheaply with reasonable performance.

Accuracy Evaluation of Pre- and Post-treatment Setup Errors in CBCT-based Stereotactic Body Radiation Therapy (SBRT) for Lung Tumor (CBCT 기반 폐 종양 정위 신체 방사선 요법(SBRT)에서 치료 전·후 set up 에러의 정확도 평가)

  • Jang, Eun-Sung;Choi, Ji-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.861-867
    • /
    • 2021
  • Since SBRT takes up to 1 hour from 30 minutes to treatment fraction once or three to five times, there is a possibility of setup error during treatment. To reduce these set-up errors and give accurate doses, we intend to evaluate the usefulness of pre-treatment and post-treatment error values by imaging CBCT again to determine postural movement due to pre-treatment coordinate values using pre-treatment CBCT. On average, the range of systematic errors was 0.032 to 0.17 on the X and Y,Z axes, confirming that there was very little change in movement even after treatment. Tumor centripetal changes (±SD) due to respiratory tuning were 0.11 (±0.12) cm, 0.27 (±0.15) cm, and 0.21 cm (±0.31 cm) in the X, Y and Z directions. The tumor edges ±SD were 0.21 (±0.18) cm, 0.30 (±0.23) cm, and 0.19 cm (±0.26) cm in the X, Y and Z directions. The (±SD) of tumor-corrected displacements were 0.03 (±0.16) cm, 0.05 (±0.26) cm, and 0.02 (±0.23) cm in RL, AP, and SI directions, respectively. The range of the 3D vector value was 0.11 to 0-.18 cm on average when comparing pre-treatment and CBCT, and it was confirmed that the corrected set-up error was within 0.3 cm. Therefore, it was confirmed that there were some changes in values depending on some older patients, condition on the day of treatment, and body type, but they were within the significance range.

Optimization of Build Parameters in SLS Process (SLS의 공정 파라미터 최적화에 관한 연구)

  • Heo, Seong-Min;O, Do-Geun;Choe, Gyeong-Hyeon;Lee, Seok-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.769-776
    • /
    • 2000
  • RP(Rapid Prototyping) technology is gaining its popularity in building a prototype in all industries. SLS(Slective Laser Sintering) is one of RP technologies, which is focused on tooling processes as well as three dimension solid model. There are several factors, the length and the cross-sectional area of a part, that have an effect on build setup in SLS process. In this paper, the computation on geometrical relationship is used to slice STL file and to estimate these factors. Based on these values, the build setup parameters such as the heating temperature, the laser power, and the powder cartridge feed rate are determined by neural network approaches. The test results show that the computation time is saved and the neural network approach is able to apply to get the optimal parameters of build process within an acceptable error rate.

Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption (부피법을 이용한 저온 등량 수소 흡착열 측정법 개선)

  • Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Measurement of Film Thickness by Double-slit Experiment

  • Park, Soobong;Kim, Byoung Joo;Kim, Deok Woo;Cha, Myoungsik
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.52-58
    • /
    • 2021
  • We show that a simple double-slit experimental setup can be used to measure the thickness of a transparent thin film. The phase difference between the light passing through one slit covered with photoresist film and that passing through the other slit without film was estimated using the simple Fraunhofer diffraction formula for a double slit. Our method gave error of a few percent or less for film thicknesses ranging from 0.7 to 1.7 ㎛, demonstrating that a laboratory double-slit experimental setup can be utilized in practical film-thickness measurements.

Analysis of Control Error Factors of a Thermal Output Experiment for Radiant Heating Panels (복사난방패널 방열량실험의 제어오차요인 분석)

  • Shin, Dae-Uk
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • As a radiant heating panel gets more popularity, the need to study on evaluation method of thermal output of the panel also becomes increasing. Generally, the chamber using method is applied to evaluate the thermal output through an experiment. However, the chamber using method cannot be used due to the limitations on space and cost. EN1264 addresses the test equipment to evaluate the thermal output by using simpler experimental setup, and introduces application method in detail. However, there is not enough description of control methods to meet the experiment condition, and it is difficult to meet this when practical experiment. Therefore, this paper analysed the control error factors of when the thermal output experiment is performed. When EN1264 method is applied to evaluate the thermal output of the radiant floor heating panel, the error factor which is caused by the characteristic of test equipment cannot be removed by the control methods of chamber using method. In addition, the error factor can be occurred at the element which is located out of the control system. These possible error factors are defined as the characteristic error factors.

Positional uncertainties of cervical and upper thoracic spine in stereotactic body radiotherapy with thermoplastic mask immobilization

  • Jeon, Seung Hyuck;Kim, Jin Ho
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.122-128
    • /
    • 2018
  • Purpose: To investigate positional uncertainty and its correlation with clinical parameters in spine stereotactic body radiotherapy (SBRT) using thermoplastic mask (TM) immobilization. Materials and Methods: A total of 21 patients who underwent spine SBRT for cervical or upper thoracic spinal lesions were retrospectively analyzed. All patients were treated with image guidance using cone beam computed tomography (CBCT) and 4 degrees-of-freedom (DoF) positional correction. Initial, pre-treatment, and post-treatment CBCTs were analyzed. Setup error (SE), pre-treatment residual error (preRE), post-treatment residual error (postRE), intrafraction motion before treatment (IM1), and intrafraction motion during treatment (IM2) were determined from 6 DoF manual rigid registration. Results: The three-dimensional (3D) magnitudes of translational uncertainties (mean ${\pm}$ 2 standard deviation) were $3.7{\pm}3.5mm$ (SE), $0.9{\pm}0.9mm$ (preRE), $1.2{\pm}1.5mm$ (postRE), $1.4{\pm}2.4mm$ (IM1), and $0.9{\pm}1.0mm$ (IM2), and average angular differences were $1.1^{\circ}{\pm}1.2^{\circ}$ (SE), $0.9^{\circ}{\pm}1.1^{\circ}$ (preRE), $0.9^{\circ}{\pm}1.1^{\circ}$ (postRE), $0.6^{\circ}{\pm}0.9^{\circ}$ (IM1), and $0.5^{\circ}{\pm}0.5^{\circ}$ (IM2). The 3D magnitude of SE, preRE, postRE, IM1, and IM2 exceeded 2 mm in 18, 0, 3, 3, and 1 patients, respectively. No association were found between all positional uncertainties and body mass index, pain score, and treatment location (p > 0.05, Mann-Whitney test). There was a tendency of intrafraction motion to increase with overall treatment time; however, the correlation was not statistically significant (p > 0.05, Spearman rank correlation test). Conclusion: In spine SBRT using TM immobilization, CBCT and 4 DoF alignment correction, a minimum residual translational uncertainty was 2 mm. Shortening overall treatment time and 6 DoF positional correction may further reduce positional uncertainties.