• Title/Summary/Keyword: Settlement stability

Search Result 362, Processing Time 0.027 seconds

Stability analysis of an existing utility tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel (복층터널의 분기터널 굴착에 따른 지하 공동구의 안정성 분석)

  • Nam, Kyoung-Min;Choi, Min-ki;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.231-248
    • /
    • 2017
  • Government plans to construct a double-deck tunnel under a portion of Gyeongbu Expressway that will solve traffic problems and could also be used as a flood storage facility. Divergence tunnels connect the main tunnel to the urban areas and their construction effects on adjacent structures at shallow depth need to be analyzed. This study primarily includes the numerical analysis of construction effects of divergence tunnels on utility tunnels. The utility tunnel was analyzed for three cases of volume loss applied to the divergence tunnel and two cases of the angle between main tunnel and divergence tunnel ($36^{\circ}$ and $45^{\circ}$). The results show that the more the volume loss was applied and the shorter the distance was between utility tunnel and divergence tunnel, the more the utility tunnel was affected in terms of induced displacements, angular displacement and stability. The worst scenario was found out to be the one where the angle between main tunnel and divergence tunnel was $36^{\circ}$ and the distance between divergence tunnel and utility tunnel was 10 m, resulting in the largest displacement and differential settlement at the bottom of the utility tunnel. A relationship between the angular displacement and the distance to diameter ratio was also established.

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

A Study on Bearing Capacity for Installed Rammed Aggregate Pier (RAP의 배치형태에 따른 지지력에 관한 연구)

  • Kim, Younghun;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.19-26
    • /
    • 2009
  • Rammed Aggregate Pier (RAP) method is intermediate foundation between deep and shallow foundation, and it has been built in world wide. RAP represents a relatively new method that has grown steadily over 19 years since Geopier of USA developed this revolutionary method in 1989. The investigation and research in domestic is not accomplished. In this paper, the examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from changing the spacing of piles, namely installed rammed aggregate pier. Laboratory model test was administered in a sand box. Strain control test was conducted to determine the bearing capacities of the piers; 20 mm, 30 mm and 40 mm RAP in diameter using drilling equipment to make holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, as the space between each piers was closed, the settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, it allows greater chances to have more resistance to deformation, and shows more improved stability of structures. After from the verification work which is continuous leads the accumulation of the site measuring data which is various, and bearing capacity and the settlement is a plan where the research will be advanced for optimum installed RAP.

  • PDF

Behavior of failure of agricultural reservoir embankment due to overtopping (월류에 의한 저수지 제체의 붕괴 거동)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.427-439
    • /
    • 2012
  • In this study, an experiment with large-scale model was performed according to raising embankment in order to investigate the behaviour of failure due to overtopping. The pore water pressure, earth pressure and settlement by high water level, a rapid drawdown and overtopping were compared and analyzed. Also, seepage analysis and slope stability analysis were performed for steady state and transient conditions. The pore water pressure and earth pressure for inclined core type showed high value at the base of the core, but they showed no infiltration by leakage. The pore water pressure and earth pressure by overtopping increased at the upstream slope and core, it is considered a useful data that can accurately estimate the possibility of failure of the reservoir. The behavior of failure due to overtopping was gradually enlarged towards the downstream slope from reservoir crest, and the inclined core after the raising embankment was influenced significantly to prevent the reservoir failure. The pore water pressure distribution for steady state and transient condition showed positive (+) pore water pressure on the upstream slope, it was gradually changed negative (-) pore water pressure on the downstream slope. The pore water pressure by overtopping showed a larger than the high water level at the downstream slope, it was likely to be the piping phenomenon because the hydraulic gradients showed largely at the inclined core and reservoir crest. The safety factor showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Case study on Construction and Improvement of Rahmen Structures in Deep Soft Clay Deposit (대심도 연약지반에 설치된 라멘 구조물의 시공 및 보강사례)

  • Lee, Sa-Ik;Choi, Young-Chul;Yoo, Sang-Ho;Kim, Tae-Hyung;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Structures that have constructed in soft clay might suffer from many issues related to consolidation settlement or lateral movement of soft-clay during long-term period. Therefore, it is important to establish proper design and construction processes related to site investigation, soil improvement, construction management, and so on. This case study focused on the construction of the rahmen structure supported by pile foundations. Especially, the structure in this case had been constructed without improving underlying soft clay and before constructing backfill embankment due to the limited construction time and the traffic connection of the old road crossing new highway. Therefore, in order to satisfy the structural stability, the construction processes and countermeasure methods were carefully planned based on the results of preliminary numerical analyses and monitoring of ground behaviors. Through the trial and error precess during the construction, the structures had been successfully constructed.

The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence (시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석)

  • Park, Jong-Jeon;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.5-15
    • /
    • 2017
  • Skin friction may be one of the most critical factors in designing the prebored and precast pile. Special attention was given to the interface behavior of cement milk-surrounding soil during the installation of prebored and precast pile. Small-scale field model pile test was conducted for the case of single pile. The size and geometry of the small-scale field model piles were designed with pile length 1.3m, boring diameter 0.067 m. Quick maintain-load test was conducted for the cases of boring diameter 150, 125, 90, 86, 74 mm and water-cement ratio 90, 70, 60%. It was shown that the bearing capacity of the pile increased as the cement-water ratio and cement milk thickness increased. Considering the scale effect between the small-scale model test and the actual construction site, it was found that cement milk thickness of 0.1~0.4D (50~200 mm) was reasonable for the stability of the structure. Also, the proper cement paste water / cement ratio was about 70% when considering the results of this study and quality control.

Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector (유한요소해석을 이용한 복합거동 연결체의 하중지지 특성)

  • Shin, Hee-Soo;Kim, Ki-Sung;Hong, Seung Seo;Kim, YoungSeok;Ahn, Jun-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.451-460
    • /
    • 2019
  • In this study, a complex behavior connector is proposed to overcome the problems that may occur when small pile pipe and micro pile is used as a friction pile concept in the lower foundation of an oil sand plant where a piloti foundation is used. The individual settlement and heaving of piles were connected in one group to allow the composite behavior. This study performed to analyze the load carrying capacity to identify a complex behavior. In addition, the shape of the composite behavior connector was examined to apply the advantages of pile-group and piled raft foundations to oil sand plants. A scale model was constructed to measure the behavior of the load. The stability and weakness of the device were selected to determine the shape of the connector using the scale model testing.

Centrifuge Model Tests on Characteristics in Forced Replacement Method for Soft Ocean Ground to Build Coastal Structures (해안구조물 축조를 위한 해양연약지반의 강제치환 특성에 관한 원심모형실험)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.42-48
    • /
    • 2006
  • This paper shows theresults of centrifuge model experiments to investigate the behavior of a replacement method in dredged and reclaimed ground. For this experimental work, centrifuge model tests were carried out to investigate the behavior of a replacement method in soft clay ground. Basic soil property tests were performed to find the mechanical properties of clay soil sampled from the southern coast of Korea, which was used for the ground material in the centrifuge model tests. The reconstituted clay ground of the model was prepared by applying reconsolidntion pressure in a 1 g condition with a specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50 g. Replacement material of lead with a certain degree of angularity was used and placed until the settlement of the replacement material embankment reached a state of equilibrium. Vertical displacement of the replacement material was monitored during tests. The depth and shape of the replacement, especially the slope of the penetrated material and the water content of the clay ground were measured after finishing tests. Model tests for investigating the stability of an embankment after backfilling were also performed to simulate the behavior of a dike treated with replacement and backfilled with sandy material. As a result of the centrifuge model test, the behavior of the replacement, the mechanism of the replacement material being penetrated into clay ground, and the depth of the replacement were evaluated.