• Title/Summary/Keyword: Settlement stability

Search Result 363, Processing Time 0.024 seconds

Evaluations of a Seismic Performance of Geosynthetic-Reinforced Embankment Supporting Piles for a Ultra Soft Ground (침하 억제를 위하여 초연약지반에 설치된 섬유보강 성토지지말뚝의 내진성능 평가)

  • Lee, Il-Wha;Kang, Tae-Ho;Lee, Su-Hyung;Lee, Sung-Jin;Bang, Eui-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.918-927
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. Geosynthetic-reinforced embankment supporting piles method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In the paper, the evaluations of a seismic performance of geosynthetic-reinforced embankment piles for a ultra soft ground during earthquake were studied. the equivalent linear analysis was performed by SHAKE for soft ground. A seismic performance analysis of Piles was performed by GROUP PILE and PLAXIS for geosynthetic-reinforced embankment piles. Guidelines is required for pile displacement during earthquake. Conclusions of the studies come up with a idea for soil stiffness, conditions of pile cap, pile length and span.

  • PDF

Mechanical Mechanism of Main Tunnels and Cross Passage Construction - A 3D Numerical Investigation

  • Yoo, Chungsik;Shuaishuai, Cui;Ke, Wu;Qianjn, Zhang;Zheng, Zhang;Jiahui, Zhao
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • This paper presents the results of a three-dimensional numerical investigation into the mechanical mechanism of main tunnels and cross passage construction. Aimed at the complex space structure composed of two main tunnels and cross passage, 3D numerical model of the structure and surrounding rock was built to analyze the influence. Comparative analysis of different buried depths were carried out. The results of the study indicate that the stress concentration was occurred in the intersecting linings, especially in the opening side lining, which leads to an unfavorable form of force that is pulled up by the upper and lower sections in the intersecting linings due to the construction of the cross passage. The excavation of the cross passage also destroys the stability of the original soil layer and causes settlement of the surface and main tunnels. Practical implications of the findings are discussed.

Measures to control deformation in deep excavation for cut and cover tunneling

  • Nam, Kyu-Tae;Jeong, Jae-Ho;Kim, Seung-Hyun;Kim, Kang-Hyun;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.339-348
    • /
    • 2022
  • The bored tunneling method is generally preferred for urban tunnel construction, However the cut & cover tunnel is still necessary for special conditions, such as metro station and access structures. In some case, deep excavation for cut & cover construction is planed of irregular and unusual shape, as a consequence, the convex and concave corner is often encountered during that excavation. In particular, discontinuity or imbalance of the support structure in the convex corner can lead to collapse, which may result in damages and casualties. In this study, the behavior of the convex corner of retaining structure were investigated using 3-dimensional numerical models established to be able to simulate the split-shaped behavior of convex corners. To improve the stability in the vicinity of the convex corner, several stabilizing measures were proposed and estimated numerically. It is found that linking two discretized wales at the convex corner can effectively perform the control of deformation. Furthermore, it was also confirmed that the stabilizing measures can be enhanced when the tie-material linking two discretized wales is installed at the depth of the maximum wall deflection.

A Study on the Institutional Application and Its Implications of a BPO (BPO의 제도적 운용과 그 시사점에 관한 연구)

  • Chae, Jin-Ik
    • Korea Trade Review
    • /
    • v.41 no.5
    • /
    • pp.139-161
    • /
    • 2016
  • This study reviewed the perspective of the institutional application and trade finance settlement of Bank Payment Obligation(BPO). The BPO is a payment method based on trade data-matching which can be used for risk mitigation and payment. The BPO offers the institutional advantages such as an automated solution, an assurance of payment, an improved overall efficiency of business, risk mitigation for all parties, trade financing, etc. The BPO will be developed as a new trade payment method that meets the periodic paradigm thanks to many benefits and usefulness. The BPO will greatly improve the efficiency and stability of the trade payment system in that it is operated by a technology-enabled, databased mechanism that can be applied to a variety of trade transactions. So, the BPO is expected to evolve into an alternative instrument of the trade payment system. This paper is based on documentary research focusing on papers, websites of ICC and SWIFT, and international regulation and laws and so on.

  • PDF

Deformation characteristics and stability analysis of semi-covered deep excavations with existing buildings

  • Linfeng Wang;Xiaohan Zhou;Tao Chen;Xinrong Liu;Peng Liu;Shaoming Wu;Feng Chen;Bin Xu
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.87-102
    • /
    • 2023
  • The cover plate and the building loads often make the semi-covered deep excavations with existing buildings bearing asymmetric load, presenting different deformation characteristics with normal excavations, which is not absolutely clear in current studies. Based on a typical engineering, the building storeys, the basement storeys, the pile length, the existence of the cover plate (CP) and the depth of the diaphragm walls (DW) were selected as variables, and 44 groups of simulation were designed to study the influence of existing buildings and the semi-covered supporting system on the deformation of the excavations. The results showed that the maximum lateral displacement of DW, δhm, and the depth of δhm, Hm, are affected seriously by the building storeys and the basement storeys. Asymmetric structures and loading lead to certain lateral displacement of DW at the beginning of excavation, resulting in different relationships between δhm and excavation depth, H. The maximum surface settlement outside the pit, δvm, increases significantly and the location, dm, moves away from the pit with the building storeys increases. δvm has a quadratic correlation with H due to the existing buildings. CP and building load will affect the style of the lateral displacement curve of DW seriously in different aspects.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Mechanical and microstructural investigations on cement-treated expansive organic subgrade soil

  • Nazerke Sagidullina;Jong Kim;Alfrendo Satyanaga;Taeseo Ku;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.353-366
    • /
    • 2024
  • Organic soils pose significant challenges in geotechnical engineering due to their high compressibility and low stability, which can result in issues like differential settlement, rutting, and pavement deformation. This study explores effective methods for stabilizing organic soils. Rather than conventional ordinary Portland cement (OPC), the focus is on using environmentally friendly calcium sulfoaluminate (CSA) cement, known for its rapid setting, high early strength development, and environmental benefits. Mechanical behavior is analyzed through 1-D free swell, unconfined compressive strength (UCS), and bender element (BE) tests. Microstructural analyses, including Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), characterize the soil mixed with CSA cement. Experimental results demonstrate improved soil properties with increasing cement dosage and curing periods. A notable strength increase is observed in soil samples with 15% cement content, with UCS doubling after 7 days. This trend aligns with shear wave velocity results from the BE test. SEM and FTIR spectroscopy reveal how CSA cement hydration forms hydrated calcium silicate gel and ettringite, enhancing soil properties. CSA cement is recommended for reinforcing organic subgrade soil due to its eco-friendly nature and rapid strength gain, contributing to improved durability.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

Track Stability Assessment for Deep Excavations in Adjacent to Urban Railways (도시철도 인접지반 깊은 굴착 시 궤도 안정성 평가)

  • Jeon, Sang-Soo;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.614-627
    • /
    • 2018
  • Urban railway lines have been constructed adjacent to residential buildings and urban areas. The expansion of transportation networks and reconstruction of residential buildings in highly populated urban areas require deep excavations in areas adjacent to urban railways. Mobilized soil stresses and changes in the groundwater level induced by deep excavations results in track irregularities in urban railways. In this study, a three-dimensional finite difference model using the commercial program FLAC3D was adopted to estimate the horizontal displacements of earth retaining structures, settlements of backfill, the stability of track irregularity and underground box structure based on the criteria of each railway organization and its relationships. In deep excavations, a change in groundwater level induces relatively very small differences for track gauge irregularities, whereas relatively large differences for longitudinal irregularities of 72.5%, twist irregularities of 83.3%, cross level irregularities of 61.9%, and alignments of 43.3% were found to be the maximum differences when the horizontal displacement of earth retaining wall and settlement of backfill were 65.1% and 21.4%, respectively, because the groundwater level (GWL) on the ground surface-mobilized tensile strength of the underground box structure exceeds the allowable value. Therefore, three-dimensional numerical analysis was performed in this study. Overall, real-time monitoring should be carried out to prevent railway accidents in advance when a deep excavation adjacent to urban railway structures is constructed.