• 제목/요약/키워드: Settlement stability

검색결과 361건 처리시간 0.027초

폐기물 매립지 인공합성 차수재 강도와 침하영향에 관한 연구 (A Study on the Strength of Geotextile and the Influence of Settlement in a Waste Landfill)

  • 장연수;임학수;권강오
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.241-245
    • /
    • 2000
  • In this paper, the results of the direct shear interface friction test is introduced to understand interface friction between geosynthetic materials that are required for analyzing slope stability of the liner system of waste landfills. Tensile stresses that occur in a liner system due to differential settlement with waste load are estimated using FLAC. It was shown that HDPE/geocomposite inteface friction angle is 11.9$^{\circ}$, HDPE/wastes is 12.0$^{\circ}$ and geotextile/wastes is 28.0$^{\circ}$. Tensile stress due to settlement in a foundation of landfill is well within the limits of tensile strength regulated by waste treatment law.

  • PDF

CFRD의 담수 후 정부침하량 예측 (Crest Settlement Prediction of Concrete Faced Rock-Fill Dam After Initial Impounding)

  • 김용성;박한규;임희대
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.349-354
    • /
    • 2005
  • In this study, settlement characteristics of 23 CFRD was investigated from monitoring data and the method to estimate the crest settlements considering internal settlement during constructions was proposed. Moreover, crest settlement smaller than 20cm and deflection of face slab smaller than 20cm are not considered to be critical to the stability of large dam whose height is over 40m. Therefore, we assigned the region as safe zone that can be used as a guideline of maintenance of dam. These estimated data can be used in the design, construction and long-term maintenance in domestic CFRD hereafter.

  • PDF

토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과 (Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition)

  • 이일화;이성진;이수형;문인호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

Reliability analysis of shallow tunnel with surface settlement

  • Yang, X.L.;Li, W.T.
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.313-326
    • /
    • 2017
  • Based on the reliability theory and limit analysis method, the roof stability of a shallow tunnel is investigated under the condition of surface settlement. Nonlinear Hoek-Brown failure criterion is adopted in the present analysis. With the consideration of surface settlement, the internal energy and external work are calculated. Equating the rate of energy dissipation to the external rate of work, the expression of support pressure is derived. With the help of variational approach, a performance function is proposed to reliability analysis. Improved response surface method is used to calculate the Hasofer-Lind reliability index and the failure probability. In order to assess the validity of the present results, Monte-Carlo simulation is performed to examine the correctness. Sensitivity analysis is used to estimate the influence of different variables on reliability index. Among random variables, the unit weight significantly affects the reliability index. It is found that the greater coefficient of variation of variables lead to the higher failure probability. On the basis of the discussions, the reliability-based design is achieved to calculate the required tunnel support pressure under different situations when the target reliability index is obtained.

해안매립지반의 도시철도 시공에 따른 구조물 침하 특성 분석 (Characteristics of Structure Settlement due to Urban Railway Construction on Reclaimed Land)

  • 신은철;임용관;박정준
    • 한국지반신소재학회논문집
    • /
    • 제11권1호
    • /
    • pp.23-33
    • /
    • 2012
  • 본 연구의 대상 현장은 굴착심도가 약 20m 내외로 사업 전구간을 개착공법으로 계획하였고, 흙막이 가시설공법은 굴착심도까지 쉬트파일과 버팀보 공법을 적용하여 도시철도 하부기초에서 계측된 침하 자료를 사용, 시공 중 대상 현장에서 발생된 지반공학적 문제점을 분석하였다. 쉬트파일 인발에 따른 영향을 알아보기 위하여 제 1구간과 제 2구간에 간극수압계와 지하수위계를 설치하여 연속적인 쉬트파일 인발에 따른 간극수압 및 지하수위의 변화와 하부지반 침하를 평가하였다. 또한, 구조물 하부기초 계측자료와 기존 문헌의 지반정수를 적용하여 계측시점에 해당하는 침하량을 수치해석 프로그램인 CAIN RDA 프로그램을 통하여 비교 분석하였으며 추가하중을 고려하여 장기침하를 산정하였다. 해석 결과, 6개 구간에서 5.94~12.77cm의 침하가 발생되어 제 2구간에서의 침하량이 12.77cm로 허용 침하량 10.0cm보다 크게 나타났다.

The difference in the slope supported system when excavating twin tunnels: Model test and numerical simulation

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Zhang, Jilu;Xu, Bin;Xiong, Fei;Elmageed, Ahmed Abd
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.15-30
    • /
    • 2022
  • Slope stability during the excavation of twin road tunnels is considered crucial in terms of safety. In this research, physical model testing and numerical analysis were used to investigate the characteristics of the settlement (uz) and vertical stresses (σz) along the two tunnel sections. First, two model tests for a (fill-rock) slope were conducted to study the settlement and stresses in presence and absence of slope support (plate support system). The law and value of the result were then validated by using a numerical model (FEM) based on the physical model. In addition, a finite element model with a slope supported by piles (equivalent to the plate) was used for comparison purposes. In the physical model, several rows of plates have been added to demonstrate the capacity of these plates to sustain the slope by comparing excavating twin tunnels in supported and unsupported slope, the results show that this support was effective in the upper part of the slope, while in the middle and lower part the support was limited. Additionally, the plates appear to induce less settlement in several areas of the slope with differing settlement and stress distribution as compared to piles. Furthermore, as a results of the previous mentioned investigation, there are many factors influence the stress and settlement distribution, such as the slope's cover depth, movement during excavation, buried structures such as the tunnel lining, plates or piles, and the interaction between all of these components.

흙댐의 다짐밀도가 안정도에 미치는 영향에 관한 연구 (A Study on the Effect of the Compaction Density on the Stability of Earth Dam)

  • 윤충섭;김시원
    • 한국농공학회지
    • /
    • 제31권1호
    • /
    • pp.82-95
    • /
    • 1989
  • This study was carried out for the stability analysis of earth dam by the variation of compaction density. The test samples were taken from five kinds of soil used for banking material and the degree of compaction for this samples were chosen 100, 95, 90, 85, and 80 percent. The stability problems were analysed by the settlement and camber( extra banking) of dam, strength parameter and dam slope, and coefficient of permeability and seapage flow through dam body. The results of the stability analysis of earth dam are as follows. 1. The more the fine particle increases and lower the compaction degree becomes, the lower the preconsolidation load becomes but the compression index becomes higher. 2. Sixty to eighty percent of settlement of dam occurs during the construction period and the settlement ratio after completion of dam is inversly proportional to the degree of compaction. 3. The camber of dam has heigher value in condition that it has more fine particle(N) and heigher dam height(H) with the relation of H= e(aN-bH-e). 4. The cohesion(C) decreases in proportion to compaction degree(D) and fine particle(N) with the relation of C= aD+ bN-c, but the internal friction angle is almost constant regardless of change of degree of compaction. 5. In fine soil, strength parameter from triaxial compression test is smaller than that from direct shear test but, they are almost same in coarse soil regardless of the test method. 6. The safety factor of the dam slope generally decreases in proportion to cohesion and degree of compaction but, in case of coarse soil, it is less related to the degree of compaction and is mainly afected by internal friction angle. 7. Soil permeability(K) decreases by the increases of the degree of compaction and fine particle with relation of K=e(a-bl)-cN) 8. The more compaction thickness is, the less vertical permeability (Kv) is but the more h6rzontal permeability (KH) is, and ratio of Kv versus KH is largest in range from 85 to 90 percent of degree of corn paction. 9. With the compaction more than 85 percent and coefficient of permeability less than ${\alpha}$X 10-$^3$cm/sec, the earth dam is generally safe from the piping action.

  • PDF

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel

  • Xiaohan Zhou;Xinrong Liu;Yu Xiao;Ninghui Liang;Yangyang Yang;Yafeng Han;Zhongping Yang
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.395-409
    • /
    • 2023
  • Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.

수치해석과 계측데이터를 이용한 연약지반의 역해석 침하 예측에 관한 연구 (A Study on Back Analysis Settlement Prediction of Soft Ground Using Numerical Analysis and Measurement Data)

  • 전상주;서혁;김대현
    • 한국지반신소재학회논문집
    • /
    • 제23권2호
    • /
    • pp.9-17
    • /
    • 2024
  • 연약지반의 성토나 구조물 축조할 때, 지반의 침하와 안전에 대한 관리가 중요하다. 하지만 실제 지반의 거동과 설계 계획과는 현저한 차이를 보일때가 많다. 본 연구에서는 연약지반 설계시 이론식에 의해 추정되는 설계침하량과 시공시 게측되는 계측침하량의 차이를 통한 침하량 예측을 통하여 그 결과를 비교,분석하고자 하였다. 집중공 18개소에 대한 침하량 분석결과, 역해석 침하량은 계측침하량과 유사한 결괏값을 확인하였으나, 설계침하량의 경우 계측침하량 대비 높은 침하량 값을 확인하였다. 설계침하량의 경우 계측값을 통해 도출된 역해석 침하량과 실내침하량 보다 1.2~1.4배 이상 높은 값을 보였다. RMSE 분석결과, 설계침하량의 경우 0.6212m, 역해석침하량의 경우 0.1697m로 확인되었다. 역해석침하량과 계측침하량의 차이가 설계침하량과 계측침하량의 차이보다 70%이상 낮은 결과를 보였으며, 이는 역해석침하량 값이 설계침하량보다 더 낮은 오차율을 보인다는 것을 확인할 수 있다.