• Title/Summary/Keyword: Settlement of sand

Search Result 300, Processing Time 0.025 seconds

Bearing Capacity of Strip Footing Adjacent on Cohesionless Slopes (비점착성 사면에 인접한 대상기초의 지지력)

  • Yu, Nam-Jae;Kim, Yeong-Gil;Jeon, Yeon-Jong
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-54
    • /
    • 1997
  • This paper is to investigate the bearing capacity and the failure mechanism of slope subjected to strip surcharges adjassent to embankment slope of sandy soil. Parametric model tests under plain strain condition were performed by changing width of footing, relative density of slope materials, and position of footing from the crest of slopes. For model tests, Jumunjin standard sand was used as the slope material and its relative density was 45% and 70%, respectively. The angle of slope was formed with 1 : 1.5 and 1 2. Rigid model footings, made of aluminuu were used with their widths of 4, 7, 10 and 12cm. For the position of model footing, position ratios, distance of model footing from the crest of slope divided by footing width, were 0, 0.5, 1, 2, 3, 4, 5. Failure mechanism was observed by using ink colored sands and markers inserted in model slopes. Ultimate bearing capacity obtained from tests was analyzed and compared with limit equilibrium method, limit analysis method and empirical equation. Characteristics of load-settlement curves and failure mechanism were also analyzed and compared with the existing theories. Thus, their effects on ultimate bearing capacity of model footing adjacent to slope were assessed.

  • PDF

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

Estimation of Ultimate Bearing Capacity for Randomly Installed Granular Compaction Pile Group (임의의 배치형태로 설치된 무리형태의 조립토 다짐말뚝에 대한 극한지지력의 평가)

  • 신방웅;채현식;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2001
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of fecundation built on the reinforced soil. Also the granular compaction piles accelerate the consolidation of soft ground using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. In the present study, the estimation procedure for the ultimate bearing capacity of randomly installed granular compaction pile group is proposed. Also, carbon rod tests have been peformed for verifying the group effect of granular compaction piles and the behavior characteristics such as bulging failure zone on granular compaction piles. From the test results, it is found that bulging failure shape of granular compaction piles was conical shape and the ultimate bearing capacity increased as the spacing of piles became gradually narrow. Also, from the proposed method in this study, the optimal locations of granular compaction piles with various installed cases are analyzed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of pile group.

  • PDF

Numerical Study on the Stress-distribution Ratio of Grouting Pile for Reinforced Ground (지반보강용 그라우팅 말뚝의 응력분담비에 대한 수치해석적 연구)

  • Yi, Gyeong-Ju;Lee, Joon-Kyu;Zhang Weiwei;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • Underground structures, such as compacted sand piles applied as soft ground countermeasures, are analyzed for settlement and stability by the composite ground design method. The basic principle of the composite ground design method is the arching effect. The reinforcing effect of the pile is evaluated as the stress-distribution ratio. When applying grouting piles with elastic properties using the ground reinforcement method, the existing stress-distribution ratio was only considered when the pile was installed. This study shows that the method of applying the stress-distribution ratio applied in previous studies should be changed when the ground reinforcement pile is installed at an arbitrary location in the ground without raising it to the ground surface. When high strength jet routing is applied, the stress-distribution ratio (n) to the in-situ ground generally ranges from 30 to 50. However, if the pile is located far from the surface and the depth goes down to the boundary depth of the stress sphere, the stress-distribution effect rapidly decreases, and the stress-distribution ratio converges to 1.5.

Characteristics of Bearing Capacity under Square Footing on Two-layered Sand (2개층 사질토지반에서 정방형 기초의 지지력 특성)

  • 김병탁;김영수;이종현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.289-299
    • /
    • 2001
  • 본 연구는 균질 및 2개층 비균질지반에서 사질토지반 상에 놓인 정방형 기초의 극한지지력과 침하에 대하여 고찰하였다. 본 연구는 얕은기초의 거동에 대한 정방형 기초의 크기, 지반 상대밀도, 기초 폭에 대한 상부층의 두께 비(H/B), 상부층 아래 경계면의 경사($\theta$) 그리고 지반강성비의 영향을 규명하기 위하여 모형실험을 수행하였다. 동일 상대밀도에서 지지력 계수($N_{{\gamma}}$)는 일정하지 않으며 기초 폭에 직접적으로 관련되며 지지력계수는 기초 폭이 증가함에 따라 감소하였다. 기초크기의 영향과 구속압력의 영향을 고려하는 Ueno 방법에 의한 극한지지력의 예측값은 고전적인 지지력 산정식보다 더 잘 일치하며 그 값은 실험값의 65% 이상으로 나타났다. $\theta$=$0^{\circ}$인 2개층 지반의 결과에 근거하여, 극한지지력에 대한 하부층 지반의 영향을 무시할 수 있는 한계 상부층 두께는 기초 폭의 2배로 결정되었다. 그러나, 73%의 상부층 상대밀도인 경우는 침하비($\delta$B) 0.05 이하에서만 이 결과가 유효하였다. 경계면이 경사진 2개층 지반의 결과에 근거하여, 상부층의 상대밀도가 느슨할수록 그리고 상부층의 두께가 클수록 극한지지력에 대한 경계면 경사의 영향은 크지 않는 것으로 나타났다. 경계면의 경사가 증가함에 따른 극한침하량의 변화는 경계면이 수평인 경우($\theta$=$0^{\circ}$)를 기준으로 0.82~1.2(상부층 $D_{r}$=73%인 경우) 그리고 0.9~1.07(상부층 $D_{r}$=50%인 경우) 정도로 나타났다.Markup Language 문서로부터 무선 마크업 언어 문서로 자동 변환된 텍스트를 인코딩하는 경우와 같이 특정한 응용 분야에서는 일반 문자열에 대한 확장 인코딩 기법을 적용할 필요가 있을 수 있다.mical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes. the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF

Estimation of Soil Loss Due to Cropland Increase in Hoeryeung, Northeast Korea (북한 회령지역의 농경지 변화에 따른 토양침식 추정)

  • Lee, Min-Boo;Kim, Nam-Shin;Kang, Chul-Sung;Shin, Keun-Ha;Choe, Han-Sung;Han, Uk
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.3
    • /
    • pp.373-384
    • /
    • 2003
  • This study analyses the soil loss due to cropland increase in the Hoeryeung area of northeast Korea, using Landsat images of 1987 TM and 2001 ETM, together with DTED, soil and geological maps, and rainfall data of 20 years. Items of land cover and land use were categorized as cropland, settlement, forest, river zone, and sand deposit by supervised classification with spectral bands 1, 2 and 3. RUSLE model is used for estimation of soil loss, and AML language for calculation of soil loss volumes. Fourier transformation method is used for unification of the geographical grids between Landsat images and DTED. GTD was selected from 1:50,000 topographic map. Main sources of soil losses over 100 ton/year may be the river zone and settlement in the both times of 1987 and 2001, but the image of the 2001 shows that sources areas have developed up to the higher mountain slopes. In the cropland average, increases of hight and gradient are 24m and $0.8^{\circ}$ from 1987 to 2001. In the case of new developed cropland, average increases are 75m and $2.5^{\circ}$, and highest soil loss has occurred at the elevation between 300 and 500m. The soil loss 57 ton of 1987 year increased 85 ton of 2001 year. Soil loss is highest in $30{\sim}50^{\circ}$ slope zones in both years, but in 2001 year, soil loss increased under $30^{\circ}$ zones. The size of area over 200 ton/year, indicating higher risk of landslides, have increased from $28.6km^2$ of 1987 year to $48.8km^2$ of 2001 year.

  • PDF

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.