• Title/Summary/Keyword: Settlement of sand

Search Result 299, Processing Time 0.027 seconds

The Settlement Behavior Analysis of SCP of Multi-Layered Ground in Incheon (인천지역 다층지반에 시공된 SCP의 침하거동 분석)

  • Yoon, Won-Sub;Kim, Jong-Kook;Park, Sang-Jun;Cho, Chul-Hyun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1042-1050
    • /
    • 2008
  • In this study, SCP method was used by purpose to improve loose sand and soft clay that is drilled Sand Compaction Pile in underground. Settlement behavior of field analyzed through SCP method. When sand Compaction Pile drilled in clay, forming composite ground that foundation and Sand Compaction Pile behavior. According to SCP method can expect bearing capacity improvement, Settlement reduction, lateral flow protection. SCP increase the consolidation settlement of ground and it reduce settlement for that purpose increase liquefaction resistance, lateral Resistance. Because SCP had been widely used for sand. Area of Inchon-A by sand compose clay and silt to upper Ground and compose soft clay to under ground. After pre-loading, it measured settlement by extensometer and settlement extensometer that purpose of ground improvement with 13% in replacement ratio. The result analyzed settlement behavior is similar to Multi-layered Ground that it happened to elastic settlement at upper ground and to consolidation settlement at under ground.

  • PDF

Simplified Estimation of Settlement in Silty Sand Grounds Induced Liquefaction (액상화에 의한 실트질 모레지반의 침하 산정)

  • Rhee, Min-Ho;Kim, Tae-Hoon;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.209-216
    • /
    • 2000
  • When subjected to earthquake shaking, saturated sandy soil may generate excess pore pressure. And a time may come when initial confining pressure will equal to excess pore pressure. Depending on the characteristics of the soil and the length of the drainage path, excess pore pressure was dissipated after earthquake. For this reason, it was induced settlement in grounds and fatal damage of various structures. In this study, settlement in silty sand grounds induced earthquake was evaluated using post-liquefaction constitutive equation between volumetric strain and shear strain from previous study. Using that, it was proposed that simplified estimation of settlement in silty sand grounds induced liquefaction.

  • PDF

Characteristics of Settlement and Bearing Capacity of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 지지력 및 침하특성)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.289-294
    • /
    • 2002
  • Sand Compaction Pile (SCP) method, which uses sand material, is frequently used in Korea. However, the use of sand for SCP faces environmental and economical problems with the shortage of its resources. Therefore, it is necessary to substitute other materials for compaction piles. One of the alternatives is using gravel in lieu of sand. Granular Pile, constituted with sand and crushed-stone, is one of the methods to improve soft clay and loose sandy ground. In this study, modeled pile load tests are performed in test cell. The observations are made on the consolidation and the variation of water table of three different grounds, original, sand pile installed, and granular pile installed ground. In addition, engineering characteristics such as bearing capacity, settlement and drainage are investigated. The test results show that Gravel Compaction Pile (GCP) is more efficient for increasing bearing capacity and reducing settlement than SCP and had similar pore water pressure dissipation to sand. Therefore, the results show that GCP can be a good substitution for SCP.

  • PDF

Application of Scale Effect in Estimating Bearing Capacity and Settlement of Footing from Plate-Load Test (평판재하시험으로부터 실제기초의 지지력 및 침하량 산정시 Scale Effect)

  • 정형식;김도열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.350-357
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were peformed with four different sizes of square plate, which is B=10, 15, 20 and 25cm respectively, on five different kinds of subsoil, which is pure sand(100:0), sand-clay mixed soil(75:25, 50:50, 25:75), and pure clay(0:100). Based on the analyzed results, this paper also proposed a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Applying the formular proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

  • PDF

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil

  • Kaur, Arshdeep;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2016
  • A total of 104 laboratory model tests on a square footing subjected to eccentrically inclined loads supported by sand reinforced with randomly distributed polypropylene fibers were conducted in order to compare the results with those obtained from unreinforced sand and with each other. For conducting the model tests, uniform sand was compacted in a test box at one particular relative density of compaction. The effect of percentage of reinforcement used, thickness of the reinforced layer, angle of inclination of load to vertical and eccentricity of load applied on various prominent factors such as ultimate load, vertical settlement, horizontal deformation and tilt were investigated. An improvement in ultimate load, vertical settlement, horizontal deformation and tilt of foundation was observed with an increase in the percentage of fibers used and thickness of reinforced sand layer under different inclinations and eccentricities of load. A statistical model using non-linear regression analysis based on present experimental data for predicting the vertical settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) of square footing on reinforced sand at any load applied was done where the dependent variable was predicted settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) respectively.

The Effect of Shear Direction on the Behavior of the Post-earthquake Settlement of GBFS (반복전단 방향의 영향에 따른 GBFS의 지진후 침하 거동)

  • Baek, Won-Jin;Hiroshi, Matsuda;Park, Kyung-Hwan;Kim, Jin-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.5-12
    • /
    • 2010
  • In this study, in order to clarify the effect of the direction of cyclic shear on the post-earthquake settlement the multi-directional shear tests were carried out for Toyoura Japan standard sand, Genkai natural sand, Kaolinite and the Granulated Blast Furnace Slag (GBFS). The diameter and the height of the specimen are 75 mm and 20 mm, respectively. In a series of tests, the number of strain cycles was adjusted as n=5, 20, 30, 100, 200 and the shear strain amplitudes were varied from 0.1% to 1.0%. The relative densities of each samples were also adjusted as Dr=50, 60 and 70%. From the test results for Toyoura sand and GBFS, it is clarified that the post-earthquake settlement is relatively large at the small relative density and becomes large with the shear strain amplitude. When the influence of difference on the direction of cyclic shear decreases, the post-earthquake settlement strain for Toyoura sand is converged to a constant value, but the GBFS increases with the number of strain cycles. In addition, the post-earthquake settlement is in the order of Kaolinite > Toyoura sand > Genkai sand > GBFS.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

An Experimental Study for Substitutability of Sand Mat with Precious Slag Ball (풍쇄 슬래그의 샌드매트 대체 가능성에 대한 실험적 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kang, Jeong-Ku
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • At present, the sand mat method is actively used for improvement of soft ground. But, there are some problems related with sand mat which has been used as a way to accelerate consolidation settlement. First of all, insufficiency of sand due to imbalances in market supply and demand is the one of the biggest problems, which makes price high of sand and delays a term of total construction work. Moreover, it is necessary to preserve integrity of environment from natural disruption caused by indiscreet quarrying and dredging operation to supply sand for soil improvement construction site. This paper presents the feasibility study to use of Precious Slag Ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement property. It is also evaluates the performance of Precious Slag Ball as a sand mat in terms of discharge capacity, ground settlement by the K-Embank program based on field experimental work.

  • PDF