• Title/Summary/Keyword: Settlement Factors

Search Result 413, Processing Time 0.032 seconds

New Design Method for Pile Group under Vertical Load (연직하중을 받는 무리말뚝의 새로운 설계 방법)

  • 이수형;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.11-29
    • /
    • 2002
  • Current design of pile group is based on the estimation of the overall bearing capacity of a pile group from that of a single pile using a group efficiency. However, the behaviors of a pile group are influenced by various factors such as method of pile installation, pile-soil-pile interaction, cap-soil-pile interaction, etc. Thus it is practically impossible to take into account these factors reasonably with the only group efficiency, In this paper, a new method for the design of pile groups is proposed, where the significant factors affecting the behavior of a pile group are considered separately by adopting several efficiencies. Furthermore, in the proposed method, the load transfer characteristics of piles and the difference of pile behaviors with respect to the pile locations in group can be taken into account. The efficiencies for the method are determined using the settlement failure criterion, which is consistent with the concept of allowable settlement for structures. The efficiencies calculated from the results of existing model tests are presented, and the bearing capacity of a pile group in the other model test is calculated and compared with that from the test result, to verify the validity of the proposed method.

  • PDF

A Study on the Selection of Environmental Impact Assessment Factors through Public Participation (주민참여를 통한 환경영향평가 항목선정에 관한 연구 : 원자력발전소 개발사업을 대상으로)

  • Kim, Kwi-Gon;Youn, So-Won;Sung, Hyun-Chan;Park, Byoung-Won
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.1
    • /
    • pp.25-35
    • /
    • 1995
  • The objective of the study is to produce preferential impact assessment factors for Environmental Impact Assessment by considering regional features and public participation in the initial stages of EIA. In order to produce preferential impact assessment factors, the study was carried out through theoretical research and a survey of public awareness as a ways to reflect public participation based on theoretical research. The survey of public awareness was conducted in the form of an interview to review the impact which the construction of atomic power plants at Hyo-am village, Jang-an, Kyungsang Province and Bi-hak village, Suhsang-myon, Ulsan-Kun will have on the surrounding environment: to reflect public participation on deciding preferential assessment: and to determine the extent of alternatives of the proposed project. As the result of the study, the following were identified as preferential assessment factors in the settlement and surrounding areas cultivation marine products, change of temperature of seawater due to flow of warm water, land use(negative), noise vibration during construction, existing plants, erosion accumulation, influx of manpower for construction(negative), recreation landscaping during construction and operation, change in flow of transportation during construction, the quality of seawater during construction and operation were produced as preferential assessment factors in both settlement area and neighboring areas. In the settlement area, the educational environment(negative & positive) and positive aspects of the influx of manpower for construction were also identified as preferential assessment factors.

  • PDF

A Study on Determinants of Export Payment Terms in Korean Small & Medium Enterprises (한국 중소기업의 수출대금결제방식 결정요인에 관한 연구)

  • Choi, Kwang-Ho
    • Korea Trade Review
    • /
    • v.43 no.2
    • /
    • pp.159-180
    • /
    • 2018
  • The purpose of this study is to contribute to the efficient selection of SMEs' trade settlement system through the empirical analysis of determinants of the payment method of SMEs in Korea. In the previous study, external factors, internal factors, settlement characteristics, transaction goods, transaction amount factors and risk management factors were used. Questionnaires were excluded from analysis, and the number of validated samples collected was 155. To conduct the study, all empirical analyses were verified at the significance level p <.005. Statistical analysis was performed using the SPSSWIN 18.0 program. Analysis results found the payment method used in the company was based on the year of establishment, export items, transaction area, type of transaction, and size of company. Empirical analysis showed that factors influencing the choice of the letter of credit are external factors, internal factors, the risk management factors, and the transaction amounts, etc. Results of this study are as follows: First, the effects of external factors, internal factors, settlement characteristics, and transaction amounts were significant. Hypothesis testing of collections trading methods has not been adopted in all areas presented. In order to utilize the research results, we conducted the study and comparison of the payment method of the income.

  • PDF

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

Characteristics of Behavior of the Crushed Stone Reinforced Roadbed under Cyclic Loading (동적하중 재하시 쇄석강화노반의 거동 특성)

  • 황선근;이성혁;이일화;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.525-532
    • /
    • 2001
  • In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale railroad roadbed tests. Several real scale reinforced railroad roadbeds were constructed in the laboratory with different subgrade conditions and were tested with the estimated actual train loads including the impact loading of train. The affecting factors such as settlement, earth pressure and stress change at the surface of reinforced roadbed, subgrade layers as well as surface of rails were measured. It was found through the actual testing that for the roadbed with the same thickness, the settlement and vibration level (velocity) of reinforced roadbed decreases with the increase of reaction modulus of subgrade. The settlement of reinforced roadbed with the same reaction modulus of subgrade also decreases with the increase of thickness of the reinforced roadbed.

  • PDF

Wetting-Induced Collapse in Rock Fill Materials for Embankment (토공구간 성토체의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1287-1296
    • /
    • 2007
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing by several researchers(Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, with focusing in various soil/rock type, stress levels, wetting condition more closely.

  • PDF

A Prediction Method for Ground Surface Settlement During Shield Tunneling in Cohesive Soils (점성토 지반에서의 실드 터널 시공에 따른 지표침하 예측 기법)

  • Yoo, Chung-Sik;Lee, Ho
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.107-122
    • /
    • 1997
  • This paper presents a ground surface settlement prediction method for shield tunneling in cohesive soils. In order to develop the method, a parametric study on shield tunneling was performed by using a threetimensional elasto-plastic finite element analysis, which can simulate the construction procedure. By using the results of the finite element analysis, the ground movement mechanism was investigated and a base which relates the ground surface settlement and iuluencing factors was formed. The data base was then used to formulate semi -empirical equations for both surface settlement ratio above tunnel face and imflection point by means of a regression analysis. Furthermore, a prediction method for transverse and longitudinal surface settlement profiles was suggested by using the leveloped equations in conjunction with the normal probability curve. Effectiveness of the developed method was illustrated by comparing settlement profiles obtained by using the developed method with the results of finite element analysis and measured data. Based on the comparison, it was concluded that the developed method can be effectively rosed for practical applications at least within the conditions investigated.

  • PDF

A Study on Surface Settlement Prediction Method of Trenchless Technology Pipe Jacking Method (비개착 강관압입공법의 지표침하 예측방법 연구)

  • Chung, Jeeseung;Lee, Gyuyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.29-37
    • /
    • 2015
  • Non-excavation method is needed to secure the stability of existing structures during construction. Therefore, prediction of ground settlement is essential. Causes of settlement when using steel pipe indentation method are leading pipe-steel pipe gap, excessive excavation and soil-steel pipe friction etc. Also they are similar to the causes of settlement when using Shield TBM during construction. In this study, ground settlement during steel pipe indentation is predicted by the Gap Parameter Method and Volume Loss Method which are kinds of Shield TBM prediction Method. and compared with those of prediction methods by conducting field test. As a result, Volume Loss Prediction Method is the most similar to the field tests. However, It is needed to additional studies, such as decision of the factors and adaptability for total settlement predictions of non-excavation method.

Reliability Analysis of Final Settlement Using Terzaghi's Consolidation Theory (테르자기 압밀이론을 이용한 최종압밀침하량에 관한 신뢰성 해석)

  • Chae, Jong Gil;Jung, Min Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.349-358
    • /
    • 2008
  • In performing the reliability analysis for predicting the settlement with time of alluvial clay layer at Kobe airport, the uncertainties of geotechnical properties were examined based on the stochastic and probabilistic theory. By using Terzaghi's consolidation theory as the objective function, the failure probability was normalized based on AFOSM method. As the result of reliability analysis, the occurrence probabilities for the cases of the target settlement of ${\pm}10%,\;{\pm}25%$ of the total settlement from the deterministic analysis were 30~50%, 60%~90%, respectively. Considering that the variation coefficients of input variable are almost similar as those of past researches, the acceptable error range of the total settlement would be expected in the range of 10% of the predicted total settlement. As the result of sensitivity analysis, the factors which affect significantly on the settlement analysis were the uncertainties of the compression coefficient Cc, the pre-consolidation stress Pc, and the prediction model employed. Accordingly, it is very important for the reliable prediction with high reliability to obtain reliable soil properties such as Cc and Pc by performing laboratory tests in which the in-situ stress and strain conditions are properly simulated.

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.