• Title/Summary/Keyword: Setting parameters

Search Result 510, Processing Time 0.032 seconds

Multiple vertical depression-based HMS active target detection using GSFM pulse (GSFM 펄스를 이용한 다중 수직지향각 기반 선체고정소나 능동 표적 탐지)

  • Hong, Jungpyo;Cho, Chomgun;Kim, Geunhwan;Lee, Kyunkyung;Yoon, Kyungsik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.237-245
    • /
    • 2020
  • In decades, active sonar, which transmits signals and detects incident signals reflected by underwater targets, has been significantly studied since passive sonar in Anti-Submarine Warfare (ASW) detection performance becomes lowered, as underwater threats become their radiated noise reduced. In general, active sonar using Hull-Mounted Sonar (HMS) adjusts vertical tilt (depression) and sequentially transmits multiple Linear Frequency Modulation (LFM) subpulses which have non-overlapped bands, i. e. 1 kHz ~ 2 kHz, 2 kHz ~ 3 kHz, in order to reduce shadow zones. Recently, however, Generalized SFM (GSFM), which is generalized form of SFM, is proposed, and it is confirmed that subpulses of GSFM have orthogonality among each other depending on setting of GSFM parameters. Hence, in this paper, we applied GSFM to active target detection using HMS to improve the performance by the signal processing gain obtained from enlarged bandwidths of GSFM subpulses compared to those of LFM subpulses. Through simulation, we verified that when the number of subpulses is three, the matched filter gain of GSFM is approximately 5 dB higher than that of LFM.

Estimation of the Exploitable Carrying Capacity in the Korean Water of the East China Sea (한국 남해의 어획대상 환경수용량 추정 연구)

  • ZHANG, Chang-Ik;SEO, Young-Il;KANG, Hee-Joong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.513-525
    • /
    • 2017
  • In the estimation of the exploitable carrying capacity (ECC) in the Korean water of the East China Sea, two approaches, which are the ecosystem modeling method (EMM) and the holistic production method (HPM), were applied. The EMM is accomplished by Ecopath with Ecosim model using a number of ecological data and fishery catch for each species group, which was categorized by a self-organizing mapping (SOM) based on eight biological characteristics of species. In this method, the converged value during the Ecosim simulation by setting the instantaneous rate of fishing mortality (F) as zero was estimated as the ECC of each group. The HPM is to use surplus production models for estimateing ECC. The ECC estimates were 4.6 and 5.1 million mt (mmt) from EMM and HPM, respectiverly. The estimate from the EMM has a considerable uncertainty due to the lack of confidence in input ecological parameters, especially production/biomass ratio (P/B) and consumption/biomass ratio (Q/B). However, ECC from the HPM was estimated on the basis of relatively fewer assumptions and long time-series fishery data as input, so the estimate from the HPM is regarded as more reasonable estimate of ECC, although the ECC estimate could be considerd as a preliminary one. The quality of input data should be improved for the future study of the ECC to obtain more reliable estimate.

Determination of Optimal Ship Route in Coastal Sea Considering Sea State and Under Keel Clearance (해상 상태 및 선저여유수심을 고려한 연안 내 선박의 최적 항로 결정)

  • Lee, Wonhee;Yoo, Wonchul;Choi, Gwang-Hyeok;Ham, Seung-Ho;Kim, Tae-wan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.480-487
    • /
    • 2019
  • Ship route planning is to find a route to minimize voyage time and/or fuel consumption in a given sea state. Unlike previous studies, this study proposes an optimization method for the route planning to avoid the grounding risk near the coast. The route waypoints were searched using A* algorithm, and the route simplification was performed to remove redundant waypoints using Douglas-Peucker algorithm. The optimization was performed to minimize fuel consumption by setting the optimization design parameters to the engine rpm. The sea state factors such as wind, wave, and current are also considered for route planning. We propose the constraint to avoid ground risk by using under keel clearance obtained from electoronic navigational chart. The proposed method was applied to find the optimal route between Mokpo and Jeju. The result showed that the proposed method suggests the optimal route that minimizes fuel consumption.

A Comparison Study of Runoff Projections for Yongdam Dam Watershed Using SWAT (SWAT모형을 이용한 용담댐 유역의 유량 전망 결과 비교 연구)

  • Jung, Cha Mi;Shin, Mun-Ju;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • In this study, reliable future runoff projections based on RCPs for Yongdam dam watershed was performed using SWAT model, which was validated by k-fold cross validation method, and investigated the factors that cause the differences with respect to runoff projections between this study and previous studies. As a result, annual average runoff compared to baseline runoff would increase 17.7% and 26.1% in 2040s and 2080s respectively under RCP8.5 scenario, and 21.9% and 44.6% in 2040s and 2080s respectively under RCP4.5 scenario. Comparing the results to previous studies, minimum and maximum differences between runoff projections over different studies were 10.3% and 53.2%, even though runoff was projected by the same rainfall-runoff model. SWAT model has 27 parameters and physically based complex structure, so it tends to make different results by the model users' setting. In the future, it is necessary to reduce the cause of difference to generate standard runoff scenarios.

Selection of extra support points for polynomial regression (다항회귀모형에서의 추가받힘점 선택)

  • Kim, Young-Il;Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1491-1498
    • /
    • 2014
  • The major criticism of optimal experimental design is that it depends heavily on the model and its accompanying assumption that often leads the number of support points equal to the number of parameters in the model. Often in the past, a polynomial model of higher degree is assumed to handle the experimental design for the polynomial regression of lower degree. In this paper we searched the possible set of designs which are robust to the departure of the assumed model. The designs are categorized with respect to D-efficiency. The approach by O'Brien (1995) was discussed in univariate polynomial regression model setting.

Thermal and Stress Analysis of Power IGBT Module Package by Finite Element Method (유한요소법에 의한 대전력 IGBT 모듈의 열.응력해석)

  • 김남균;최영택;김상철;박종문;김은동
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.23-33
    • /
    • 1999
  • A finite element method was employed fort thermal and stress analyses of an IGBT module of 3-phase full bridge. The effect of material parameters such as substrate material, substrate area, solder thickness on the temperature and stress distributions of the module packages has been investigated. Thermal analysis results have also been compared by setting of boundary conditions such as equivalent heat transfer coefficient or constant temperature at a base metal surface of the package. The increase of ceramic substrate area up to 3 times does little contribution to the reduction(8.9%) of thermal resistance, while contributed a lot to the reduction(60%) of thermal stress. Thicker solder resulted in higher thermal resistance but did slightly reduced thermal stresses. It is revealed by the stress analysis that maximum stress was induced at the region of copper pads which are bonded with ceramic substrate.

  • PDF

Identifying Priority Area for Nonpoint Source Pollution Management and Setting up Load Reduction Goals using the Load Duration Curve (부하지속곡선을 이용한 비점오염원 우선관리 지역 선정 및 관리목표 설정 연구)

  • Jang, Sun Sook;Ji, Hyun Seo;Kim, Hak Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.17-27
    • /
    • 2018
  • The objective of this study is to identify the priority area where the nonpoint source pollution (NPS) management is required and to set up the load reduction goals for the identified priority area. In this study, the load duration curve (LDC) was first developed using the flow and water quality data observed at 286 monitoring stations. Based on the developed LDC, the priority area for the NPS pollution management was determined using a three-step method. The 24 watersheds were finally identified as the priority areas for the NPS pollution management. The water quality parameters of concern in the priority areas were the total phosphorus or chemical oxygen demand. The load reduction goals, which were calculated as the percent reduction from current loading levels needed to meet target water quality, ranged from 67.9% to 97.2% during high flows and from 40.3% to 69.5% during moist conditions, respectively. The results from this study will help to identify critical watersheds for NPS program planning purposes. In addition, the process used in this study can be effectively applied to identify the pollutant of concern as well as the load reduction target.

Fuzzy Controller Design of PC Based for Solar Tracking System (태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.86-94
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in of order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studies. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

A New Active RED Algorithm for Congestion Control in IP Networks (IP 네트워크에서 혼잡제어를 위한 새로운 Active RED 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.437-446
    • /
    • 2002
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF (Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED (Random Early Detection). While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use static parameter setting. So, in case where these parameters do not match the requirement of the network load, the performance of these algorithms can approach that of a traditional Drop-tail. In this paper, in order to solve this problem, a new active queue management algorithm called ARED (Active RED) is proposed. ARED computes the parameter based on our heuristic method. This algorithm can effectively reduce packet loss while maintaining high link utilizations.

Data-Driven Signal Decomposition using Improved Ensemble EMD Method (개선된 앙상블 EMD 방법을 이용한 데이터 기반 신호 분해)

  • Lee, Geum-Boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.279-286
    • /
    • 2015
  • EMD is a fully data-driven signal processing method without using any predetermined basis function and requiring any user parameters setting. However EMD experiences a problem of mode mixing which interferes with decomposing the signal into similar oscillations within a mode. To overcome the problem, EEMD method was introduced. The algorithm performs the EMD method over an ensemble of the signal added independent identically distributed white noise of the same standard deviation. Even so EEMD created problems when the decomposition is complete. The ensemble of different signal with added noise may produce different number of modes and the reconstructed signal includes residual noise. This paper propose an modified EEMD method to overcome mode mixing of EMD, to provide an exact reconstruction of the original signal, and to separate modes with lower cost than EEMD's. The experimental results show that the proposed method provides a better separation of the modes with less number of sifting iterations, costs 20.87% for a complete decomposition of the signal and demonstrates superior performance in the signal reconstruction, compared with EEMD.