• Title/Summary/Keyword: Setaria viridis

Search Result 74, Processing Time 0.025 seconds

The Change of Riverside Vegetation by Construction of Ecological Stream in Suwoncheon, Gyeonggi Province (경기도 수원천 생태하천 복원사업 이후 식생변화 연구)

  • Choe, Il-Hong;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • This study aims to analyze the change in vegetation for 10 years after the construction, targeting Suwoncheon, the first domestic ecological stream construction project. As for the section for the study, the section from Gyeonggi bridge to Youngyeon bridge, the first restoration project section, was targeted. The research districts consisted of 3 districts depending on topographical structure. Investigation check cosisted of cross-sectional topographical structure, vegetation status and the structure of herbaceous plant community. As for the cross-sectional topographical structure of the stream, the width of entire stream was 26.5~28.0m and water channel is 10~20m. The area for hydrophilic space was securing spacious riverside. Upper stream of reservoir beam was shallow and slow in reservoir area above weir. Lower stream of reservoir beam, the width of water channel was narrow and ripples were formed. Among species, 9 plants were planted and 6 species plants including Salix gracilistyla, Phragmites communis and Zoysia japonica were planted at the time of construction. In the water side, there were 2 species, such as Zoysia japonica and Trifolium repens, etc, still remained after seeding at the time of constrcution. The planted plants which were observed through this investigation, were 2 species such as Festuca arundinacea and Dactylis glomerata. Apart from the planted plants, arid climate herbaceous plant such as Setaria viridis and Artemisia princeps var. orientalis formed power and the naturalized species variously emerged in 15 species. For revetment, natural stone stacking method was condicted and Salix gracilistyla, Aceriphyllum rossii, etc were planted. But all the planted plants disappeared and now it was covered with Equisetum arvense and Humulus japonicus. It was because that the base for growth and development of the plants was not constructed at the time of restoration in a way of attaching natural stones onto the concrete base. In the water channel, various wetland species including Typha orientalis, Acorus calamus var. angustatus and Phragmites communis, etc, were planted but only Salix gracilistyla, Phragmites communis and Zizania latifolia remained. As for species of the autochthons, Persicaria thunbergii was dominant. In the lower stream of reservoir beam, Humulus japonicus formed forces. In the hydrophilic space, it was necessary to direct the landscape of in-stream vegetation in cosideration of users. For this, planting Miscanthus sacchariflorus in a community was proposed. In the upper stream of reservoir beam, suplementary screen seeding was necessary so that Zizania latifolia, Typha orientalis and Phragmites communis can fit the depth of water. In the Lower stream of reservoir beam, it was necessary to constantly manage Humulus japonicus so that the wetland autochthons species, such as Phragmites communis and Persicaria thunbergii can establish power more stably.

Vegetation Strucure of Haepyeong Wetland in Nakdong River (낙동강 해평 습지의 식생 구조)

  • Lee, Pal-Hong;Kim, Cheol-Soo;Kim, Tae-Geun;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2005
  • Vegetation structure of the vascular plants was investigated from March 2003 to October 2003 in Haepyeong wetland, Gumi-si, Gyeongsangbuk-do, Korea. Actual vegetation of Haepyeong wetland largely can be classified by floristic composition and physiognomy into 18 communities; Xanthium strumarium-Digitaria sanguinalis, Humulus japonicus, Persicaria perfoliata-Humulus japonicus, Phragmites japonica-Miscanthus sacchariflorus, Persicaria hydropiper-Phragmites communis, Persicaria hydropiper, Phragmites japonica-Persicaria hydropiper, Miscanthus sacchariflorus- Phragmites japonica, Persicaria hydropiper-Phragmites japonica, Miscanthus sacchariflorus-Salix glandulosa, Salix nipponica-Salix glandulosa, Salix nipponica-Salix koreensis, Salix nipponica, Miscanthus sacchariflorus-Salix nipponica, Phalaris arundinacea-Salix nipponica, Salix glandulosa-Salix nipponica, Trapa japonica, and Ceratophyllum demersum-Trapa japonica. Among them, the area of the Salix nipponica-Salix koreensis community was the largest as 122.2ha(9.23%). The dominant vegetation type was Miscanthus sacchariflorus-Persicaria hydropiper community based on phytosociological method, and it was was classified into three subcommunities; Salix glandulosa-Salix nipponica subcommunity, Digitaria sanguinalis subcommunity, and Cyperus amuricus subcommunity. Differential species of Salix glandulosa-Salix nipponica subcommunity were Salix nipponica, S. glandulosa, S. koreensis, Scirpus radicans, Persicaria maackiana, and Achyranthes japonica; differential species of Digitaria sanguinalis subcommunity were D. sanguinalis, Setaria viridis, Ambrosia artemisiifolia var. elatior, and Cyperus orthostachyus; differential species of Xanthium strumarium subcommunity were X. strumarium, Acalypha australis, Erigeron canadensis, Echinochloa crus-galli, and Vicia tetrasperma. Zonation of vascular hydrophytes and hygrophytes was as followers: Salix glandulosa, S. koreensis, S. nipponica were distributed in the region of land which water table is low, and Persicaria maackiana, Persicaria hydropiper, Scirpus radicans were distributed in the understory. And emergent plants such as Phragmites communis and Scirpus karuizawensis, floating-leaved plant such as Trapa japonica, submersed plant such as Ceratophyllum demersum, and free floating plant such as Spirodela polyrhiza formed the zonation from shoreline to water. The specified wild plants designated by the Korean Association for Conservation of Nature, Ministry of Forest, and Ministry of Environment were not distributed in the study area. It was expected that Haepyeong Wetland worthy of conservation contributed purifying water pollution, giving habitats of many lifes, and providing beautiful scenes of the river.

  • PDF

Tolerance of Corn, Sorghum, Sorghum-Sudangrass Hybrid, and Pearl Millet to Simazine and Alachlor (옥수수, 수수, 수수-수단그라스 교잡종 및 진주조의 Simazine과 Alachlor에 대한 저항성)

  • 이석순;최상집
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.2
    • /
    • pp.113-119
    • /
    • 1989
  • In 1988 the tolerance of corn, sorghum, sorghum-sudangrass. and pearl millet hybrids to simazine and alachlor was tested in field during the growing season and pots during the summer and fall. In field and summer pot experiments(Exp.) the above mentioned four crops were tested at the ratios of simazine WP (50% ai, g/10a) ; alachlor EC (43.7% ai. ml/10a) of 130: 0, 100: 0, 70: 200, 0: 300 and 0: 400 and a sorghum hybrid was tested at 0, 50, 100, 200, 300, and 400ml/10a of alachlor and 70g/10a of simazine+ 200ml/10a of alachlor in fall pot Exp. In corn emergence rate, percent stand, plant height of seedlings, and dry matter(DM) yield were not affected by simazine and alachlor in all Exps. In sorghum and sorghum-sudangrass early growth and DM yield were not affected by simazine and alachlor in field Exp. In contrast, simazine reduced height and dry weight of seedlings slightly without any deterimental effects on emergence and survival rates. but alachlor reduced survival rate, plant height, and dry weight of seedlings significantly in summer pot Exp. In fall Exp. alachlor did not affect emergence rate of a sorghum hybrid, but survival rate, plant height, and dry weight of seedlings reduced with increased levels of alachlor when applied higher than 100ml/10a. In pearl millet simazine did not affect emergence rate, plant height, and DM yield in field, but reduced survival rate, plant height, and dry weight of seedlings in summer pot Exp. However, alachlor reduced DM yield significantly due to a lower percent stand even in the field. In summer pot Exp. although emeregence rate was slightly reduced, all seedlings were dead after emergence. Simazine did not control grasses such as Digitaria sanguinalis, Setaria viridis, Echinochloa crusgalli effectively, but controlled broadleaf weeds. Alachlor controlled all grasses, Porluraca oleracea, and Amaranthus mangostanus, but did not control Acalypha australis and Chenopodium album. A combination of simazine and alachlor controlled weeds more effectively than either simazine or alachlor alone.

  • PDF

Weed Occurrence in Upland Crop Fields of Korea (최근(最近) 한국(韓國)의 전작지(田作地) 잡초발생(雜草發生) 분포(分布)에 관(關하)여)

  • Chang, Y.H.;Kim, C.S.;Youn, K.B.
    • Korean Journal of Weed Science
    • /
    • v.10 no.4
    • /
    • pp.294-304
    • /
    • 1990
  • For the survey of weed distribution in the cultivated upland of Korea, weed species were investigated at 2 field by crop of 2 myon per kun in 81 kun selected among the 139 kun of the whole country. 232 species in 46 families were observed, totally. From among the result, 165 species in 39 families the in winter crop field, 189 species in 41 families in the summer crop field were classified. 122 species in 34 families were emerged the from the upland crop field of the whole season. Further more, in the 10 dominant weed species which emerged from upland crop field, Alopecurus aequalis, Chenopodium album, slellaria media, Galium spurieum, Capsella bursa-pastoris and Rorippa islandica were dominated in the winter upland and paddy field, and that Erigeron canadensis, Cyperus amuricus, Equisetum arvense and Arenaria serpyllifolia were dominated in the winter upland field, additionally. Stellaria alsine, Bothriospermum tenellum, Trigonotis peduncularis and Polygonum arviculare were dominated in the winter cropping on drained paddy field, additionally. In the summer crop field, Digitaria sanguinalis, Portulaca oleracea, Acalypha australis, Echinochloa crus-galli, Setaria viridis, Persicaria hydropiper, Amaranthus lividus, commelina communis, Chenopodium album and Cyperecs amuricus were dominated.

  • PDF