• Title/Summary/Keyword: Set-pruning

Search Result 49, Processing Time 0.023 seconds

A Smart Set-Pruning Trie for Packet Classification (패킷 분류를 위한 스마트 셋-프루닝 트라이)

  • Min, Seh-Won;Lee, Na-Ra;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1285-1296
    • /
    • 2011
  • Packet classification is one of the basic and important functions of the Internet routers, and it became more important along with new emerging application programs requiring real-time transmission. Since packet classification should be accomplished in line-speed on each incoming input packet for multiple header fields, it becomes one of the challenges in designing Internet routers. Various packet classification algorithms have been proposed to provide the high-speed packet classification. Hierarchical approach achieves effective packet classification performance by significantly narrowing down the search space whenever a field lookup is completed. However, hierarchical approach involves back-tracking problem. In order to solve the problem, set-pruning trie and grid-of-trie algorithms are proposed. However, the algorithm either causes excessive node duplication or heavy pre-computation. In this paper, we propose a smart set-pruning trie which reduces the number of node duplication in the set-pruning trie by the simple merging of the lower-level tries. Simulation result shows that the proposed trie has the reduced number of copied nodes by 2-8% compared with the set-pruning trie.

An Approach to Combining Classifier with MIMO Fuzzy Model

  • Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.182-185
    • /
    • 2003
  • This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.

  • PDF

Training for Huge Data set with On Line Pruning Regression by LS-SVM

  • Kim, Dae-Hak;Shim, Joo-Yong;Oh, Kwang-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.137-141
    • /
    • 2003
  • LS-SVM(least squares support vector machine) is a widely applicable and useful machine learning technique for classification and regression analysis. LS-SVM can be a good substitute for statistical method but computational difficulties are still remained to operate the inversion of matrix of huge data set. In modern information society, we can easily get huge data sets by on line or batch mode. For these kind of huge data sets, we suggest an on line pruning regression method by LS-SVM. With relatively small number of pruned support vectors, we can have almost same performance as regression with full data set.

  • PDF

Convolutional Neural Network Based on Accelerator-Aware Pruning for Object Detection in Single-Shot Multibox Detector (싱글숏 멀티박스 검출기에서 객체 검출을 위한 가속 회로 인지형 가지치기 기반 합성곱 신경망 기법)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.141-144
    • /
    • 2020
  • Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation is required. In this paper, a pruning scheme is applied to CNNs for object detection, which can remove much amount of weights with a negligible performance degradation. Contrary to the previous ones, the pruning scheme applied in this paper considers the base accelerator architecture. With the consideration, the pruned CNNs can be efficiently performed on an ASIC or FPGA accelerator. Even with the constrained pruning, the resulting CNN shows a negligible degradation of detection performance, less-than-1% point degradation of mAP on VOD0712 test set. With the proposed scheme, CNNs can be applied to objection dtection efficiently.

A Hierarchical Packet Classification Algorithm Using Set-Pruning Binary Search Tree (셋-프루닝 이진 검색 트리를 이용한 계층적 패킷 분류 알고리즘)

  • Lee, Soo-Hyun;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.482-496
    • /
    • 2008
  • Packet classification in the Internet routers requires multi-dimensional search for multiple header fields for every incoming packet in wire-speed, hence packet classification is one of the most important challenges in router design. Hierarchical packet classification is one of the most effective solutions since search space is remarkably reduced every time a field search is completed. However, hierarchical structures have two intrinsic issues; back-tracking and empty internal nodes. In this paper, we propose a new hierarchical packet classification algorithm which solves both problems. The back-tracking is avoided by using the set-pruning and the empty internal nodes are avoided by applying the binary search tree. Simulation result shows that the proposed algorithm provides significant improvement in search speed without increasing the amount of memory requirement. We also propose an optimization technique applying controlled rule copy in set-pruning.

Tuple Pruning Using Bloom Filter for Packet Classification (패킷 분류를 위한 블룸 필터 이용 튜플 제거 알고리즘)

  • Kim, So-Yeon;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • Due to the emergence of new application programs and the fast growth of Internet users, Internet routers are required to provide the quality of services according to the class of input packets, which is identified by wire-speed packet classification. For a pre-defined rule set, by performing multi-dimensional search using various header fields of an input packet, packet classification determines the highest priority rule matching to the input packet. Efficient packet classification algorithms have been widely studied. Tuple pruning algorithm provides fast classification performance using hash-based search against the candidate tuples that may include matching rules. Bloom filter is an efficient data structure composed of a bit vector which represents the membership information of each element included in a given set. It is used as a pre-filter determining whether a specific input is a member of a set or not. This paper proposes new tuple pruning algorithms using Bloom filters, which effectively remove unnecessary tuples which do not include matching rules. Using the database known to be similar to actual rule sets used in Internet routers, simulation results show that the proposed tuple pruning algorithm provides faster packet classification as well as consumes smaller memory amount compared with the previous tuple pruning algorithm.

Unit Generation Based on Phrase Break Strength and Pruning for Corpus-Based Text-to-Speech

  • Kim, Sang-Hun;Lee, Young-Jik;Hirose, Keikichi
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.168-176
    • /
    • 2001
  • This paper discusses two important issues of corpus-based synthesis: synthesis unit generation based on phrase break strength information and pruning redundant synthesis unit instances. First, the new sentence set for recording was designed to make an efficient synthesis database, reflecting the characteristics of the Korean language. To obtain prosodic context sensitive units, we graded major prosodic phrases into 5 distinctive levels according to pause length and then discriminated intra-word triphones using the levels. Using the synthesis unit with phrase break strength information, synthetic speech was generated and evaluated subjectively. Second, a new pruning method based on weighted vector quantization (WVQ) was proposed to eliminate redundant synthesis unit instances from the synthesis database. WVQ takes the relative importance of each instance into account when clustering similar instances using vector quantization (VQ) technique. The proposed method was compared with two conventional pruning methods through objective and subjective evaluations of synthetic speech quality: one to simply limit the maximum number of instances, and the other based on normal VQ-based clustering. For the same reduction rate of instance number, the proposed method showed the best performance. The synthetic speech with reduction rate 45% had almost no perceptible degradation as compared to the synthetic speech without instance reduction.

  • PDF

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF

A Measure for Improvement in Quality of Association Rules in the Item Response Dataset (문항 응답 데이터에서 문항간 연관규칙의 질적 향상을 위한 도구 개발)

  • Kwak, Eun-Young;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, we introduce a new measure called surprisal that estimates the informativeness of transactional instances and attributes in the item response dataset and improve the quality of association rules. In order to this, we set artificial dataset and eliminate noisy and uninformative data using the surprisal first, and then generate association rules between items. And we compare the association rules from the dataset after surprisal-based pruning with support-based pruning and original dataset unpruned. Experimental result that the surprisal-based pruning improves quality of association rules in question item response datasets significantly.

  • PDF

Performance Comparison of MISP-based MANET Strong DAD Protocol

  • Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3449-3467
    • /
    • 2015
  • A broadcast operation is the fundamental transmission technique in mobile ad-hoc networks (MANETs). Because a broadcast operation can cause a broadcast storm, only selected forwarding nodes have the right to rebroadcast a broadcast message among the one-hop and two-hop neighboring nodes of a sender. This paper proposes the maximum intersection self-pruning (MISP) algorithm to minimize broadcasting redundancy. Herein, an example is given to help describe the main concept of MISP and upper bounds of forward node have been derived based on induction. A simulation conducted demonstrated that when conventional blind flooding (BF), self-pruning (SP), an optimized link state routing (OLSR) multipoint relay (MPR) set, and dominant pruning (DP), are replaced with the MISP in executing Strong duplicate address detection (DAD), the performances in terms of the energy consumption, upper bounds of the number of forward nodes, and message complexity have been improved. In addition, to evaluate the performance in reference to the link error probability, Pe, an enhancement was achieved by computing a proposed retransmission limit, S, for error recovery based on this probability. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating with limited portable energy where Strong DAD reacts differently to link errors based on the operational procedures.