• Title/Summary/Keyword: Set-pressure

Search Result 1,342, Processing Time 0.032 seconds

Comfort Evaluation of Caps from Pressure Measurement (Part I) (모자 압박감의 객관적인 평가방법 개발 (제 1 보))

  • Jun Young-Min;Park Chung-Hee;Hahn Moon-Heui;Kang Tae-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.4 s.152
    • /
    • pp.615-622
    • /
    • 2006
  • A tool to evaluate the subjective wearing comfort of caps from the objective measurement of pressure was developed. Comfortable Fittability Index(C.F.I) and Holding Power(HP) were defined to represent the subjective wearing comfort of caps. As a preliminary step to define the Comfortable Fittability Index(C.F.I), average pressure, pressure distribution, standard deviation of pressure were obtained and subjective sensation were evaluated by wearing caps. Also Holding Power(HP) was estimated from wind tunnel testing. Two sets of caps were evaluated, one set made of elastic fabric(F-caps) and the other set made of non-elastic fabric(S-caps). F-caps begin to be taken off by the higher wind velocity and thus exhibited higher values of Holding Power. On the other hand, F-caps exerted lower average pressure, narrower pressure distribution, smaller standard deviation.

A Study on Uncertainty and Sensitivity of Operational and Modelling Parameters for Feedwater Line Break Analysis (급수관 파열사고 해석에 대한 운전변수와 모형변수의 불확실성 및 민감도 연구)

  • Lee, Seung-Hyuk;Kim, Jin-Soo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.10-21
    • /
    • 1987
  • Uncertainty analysis of the FLB accident is performed for KNU-1 using the response surface methodology and Monte Carlo simulation. The FLB analyses using the RELAP4/Mod6 were performed a number of times to generate the data base for the uncertainty analysis, along with the EM calculation for comparison purpose. Two kinds of input sets are utilized for response surface method to investigate and compare the effects of the uncertainty of input variables on the RCS peak pressure following a FLB. The first set is composed of six major plant operational parameters and the second set is composed of five major modelling parameters. It is found through the analysis of results that the uncertainties of modelling parameters have more influence on the RCS peak pressure than the uncertainties of plant operational parameters and that the extra margin of 9% of peak pressure is gained. And one of the assumptions of EM calculation, which is usually accepted as conservative is found to be erroneous, that is, the initial core inlet temperature is found to act negatively on the RCS pressure following a FLB.

  • PDF

The Effect of the Making Methods of Hollow Fiber Active Layer on Performance for Nanofiltration Helical Module (Nanofiltration Helical Module에서 Hollow Fiber Active Layer의 성형법에 따른 성능변화에 관한 연구)

  • ;Belfort, Georges
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.95-109
    • /
    • 1997
  • The effects of varing axial flow rate and solute concentration on the performance of both module sets made by different methods for active layer formation were compared and determined. All experiments were conducted simultaneously at the same transmembrane pressure and energy consumption per membrane area. In every comparative run between the presence of Dean vortices in a helical module and absence of such vortices in a linear module from the first module set, the solution fluxes and permeabilities were higher, and in some cases substantially higher for the vortex flow. With pure water, the permeabilities of both modules from the second module set were different and the flux in a linear module was 150% higher than in the helical module. This explained both module membranes were totally different.

  • PDF

Analyses of hydrogen risk in containment filtered venting system using MELCOR

  • Choi, Gi Hyeon;Jerng, Dong-Wook;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.177-185
    • /
    • 2022
  • Hydrogen risk in the containment filtered venting system (CFVS) vessel was analyzed, considering operation pressure and modes with the effect of PAR and accident scenarios. The CFVS is to depressurize the containment by venting the containment atmosphere through the filtering system. The CFVS could be subject to hydrogen risk due to the change of atmospheric conditions while the containment atmosphere passes through the CFVS. It was found that hydrogen risk increased as the CFVS opening pressure was set higher because more combustible gases generated by Molten Core Concrete Interaction flowed into the CFVS. Hydrogen risk was independent of operation modes and found only at the early phase of venting both for continuous and cyclic operation modes. With PAR, hydrogen risk appeared only at the 0.9 MPa opening pressure for Station Black-Out accidents. Without PAR, however, hydrogen risk appeared even with the CFVS opening set-point of 0.5 MPa. In a slow accident like SBO, hydrogen risk was more threatening than a fast accident like Large Break Loss-of-Coolant Accident. Through this study, it is recommended to set the CFVS opening pressure lower than 0.9 MPa and to operate it in the cyclic mode to keep the CFVS available as long as possible.

A Study on Measurement of Blood Pressure by Partial Least Square Method (부분최소자승법을 이용한 혈압 측정에 관한 연구)

  • Kim, Yong-Joo;Nam, Eun-Hye;Choi, Chang-Hyun;Kim, Jong-Deok
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.438-445
    • /
    • 2008
  • The purpose of this study was to develop a measurement model based on PLS (Partial least square) method for blood pressures. Measurement system for blood pressure signals consisted of pressure sensor, va interface and embedded module. A mercury sphygmomanometer was connected with the measurement system through 3-way stopcock and used as reference of blood pressures. The blood pressure signals of 20 subjects were measured and tests were repeated 5 times per each subject. Total of 100 data were divided into a calibration set and a prediction set. The PLS models were developed to determine the systolic and the diastolic blood pressures. The PLS models were evaluated by the standard methods of the British Hypertension Society (BHS) protocol and the American Association for the Advancement of Medical Instrumentation (AAMI). The results of the PLS models were compared with those of MAA (maximum amplitude algorithm). The measured blood pressures with PLS method were highly correlated to those with a mercury sphygmomanometer in the systolic ($R^2=0.85$) and the diastolic blood pressure ($R^2=0.84$). The results showed that the PLS models were the effective tools for blood pressure measurements with high accuracy, and satisfied the standards of the BHS protocol and the AAMI.

Internal Wave Computations based on a Discontinuity in Dynamic Pressure (동압 계수의 불연속성을 이용한 내면파의 수치해석)

  • 신상묵;김동훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

Characteristics Analysis of SRM Drive System for Hydraulic Pump (유압펌프용 SRM 구동 시스템의 특성해석)

  • Lee, Ju-Hyun;Kim, Bong-Chul;Kim, Tae-Hyung;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper proposed a hydraulic pump system which uses a variable SR drive and constant capacity pump. The base and maximum speed, torque are determined from displacement capacity of the pump and maximum pressure. The drive system is set to have a minimum power consumption having hydraulic preset pressure, which is operated within a maximum capacity and maximum preset pressure. This is achieved by controlling motor speed and power with feedback signal of pressure of the hydraulic pump. A 2.2kw, 12/8-pole SR motor and DSP based digital controller are designed and prototype drive system is manufactured. The proposed variable speed SR drive system is simulated and tested with experimental set-up. The test results show that the system has some good features such as high efficiency and high response characteristics.

  • PDF

Improving Stability of Motor Generator Set of the Power Supply System for CEDM in Korean Standard Nuclear Power Plants (한국표준형 원전 제어봉구동장치 전원공급계통의 전동발전기 세트 안정성 개선)

  • Choi, Il Young;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • This paper analyzed a root cause of abnormality in the temperature and vibration at generator-side bearing of motor generator set (MG Set), which is a power supply system to control element drive mechanism (CEDM) of nuclear power plants (NPPs), and modified the design of roller-type and sealing method to improve the abnormalities. From the inspection of MG Set and analysis of temperature variation during service, it was found that the abnormal temperature transition was basically associated with original design of generator-side bearing, whose roller was axially restrained by inner race, and that the abnormal vibration level was caused by inserting small chips of cage and V-ring, which were generated due to the abnormal temperature transition at roller bearing. Type of bearing and sealing method were modified based on these analyses. The temperature and vibration level measured at roller bearing showed that the modifications clearly improved the operational stability of MG Set.

Aerodynamics of tapered and set-back buildings using Detached-eddy simulation

  • Sharma, Ashutosh;Mittal, Hemant;Gairola, Ajay
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.111-127
    • /
    • 2019
  • The tapered and set-back type of unconventional designs have been used earlier in many buildings. These shapes are aerodynamically efficient and offer a significant amount of damping against wind-induced forces and excitations. Various studies have been conducted on these shapes earlier. The present study adopts a hybrid approach of turbulence modelling i.e., Detached-eddy Simulation (DES) to investigate the effect of height modified tapered and set-back buildings on aerodynamic forces and their sensitivity towards pressure. The modifications in the flow field around the building models are also investigated and discussed. Three tapering ratios (T.R.=(Bottom width- Top width)/Height) i.e., 5%, 10%, 15% are considered for tapered and set-back buildings. The results show that, mean and RMS along-wind and across-wind forces are reduced significantly for the aerodynamically modified buildings. The extent of reduction in the forces increases as the taper ratio is increased, however, the set-back modifications are more worthwhile than tapered showing greater reduction in the forces. The pressure distribution on the surfaces of the buildings are analyzed and in the last section, the influence of the flow field on the forces is discussed.

Evaluation of the SWR′s Early Pressure Variations in the KALIMER IHTS (KALIMER IHTS의 SWR 초기 압력파 거동 분석)

  • 김연식;심윤섭;김의광;어재혁
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The analytical models and algorithm of the SPIKE code, which has been developed by KAERI's KALIMER team to investigate the sodium-water reaction phenomena in the liquid metal reactor, were introduced with its verification calculation results. The sodium water reaction of KALIMER IHTS was evaluated. Early stage of the sodium-water reaction consists of wave and mass transfer regimes. The pressure variations were independent of specific design features in the wave transfer regime. However in the mass transfer regime, the pressure variations were strongly dependent on cover gas volume and rupture disk set pressure. The early stage SWR analysis showed that the KALIMER IHTS with an appropriate cover gas volume and rupture disk set pressure had enough margin to its design pressure.