• Title/Summary/Keyword: Set-point temperature

Search Result 207, Processing Time 0.021 seconds

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

A Transient Modeling of Temperature Variation in a Melting Furnace of a Pyrolysis Melting Incinerator (열분해 용융소각로 내 용융로에서의 온도변화에 대한 과정론적 모델링)

  • Kim, Bong-Keun;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.167-171
    • /
    • 2006
  • The previous models for thermal behavior in the melting furnace were deterministic, composed of such a form that if the initial input conditions are determined, the results would have been come out by using the basic heat equilibrium equations. But making the experiment by trusting the analysis results, the melted slag is fortuitously set often, because temperature variation of the melted slag in the reaction process is not point function but path function. So in this study, a transient model was developed and verified by comparing with the experimental results.

  • PDF

공조 시스템용 DDC의 온라인 최적제어에 관한 연구

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1072-1078
    • /
    • 2001
  • The real time optimal control algorithm of the DDC controller for chilled water and supply air temperature set-point of heating, ventilating, air-conditioning and refrigeration systems has been researched for minimization of the total power which is consumed by the chiller, chilled water pump and air handing unit fan. The study has been done by using TRNSYS program in order to analyze the central cooling system in terms of the environmental variables such as indoor cooling lead and wet-bulb temperature. This optimal control alogorithm saves more energy and is suitable for real time on-line control in comparison with conventional method.

  • PDF

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation (고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석)

  • Park, Young-Hark;Boo, Joon-Hong;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

Fabrication and Property of Water Level and Temperature Sensor for Medical Cooling System Using a Highly Sensitive GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 의료용 냉각기 수위 및 수온 센서의 제작과 특성)

  • Park, Kwang-Jun;Choi, Jong-Gu;Lee, Sang-Suk;Lee, Bum-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • We fabricated a sensor for measuring the water level and water temperature using GMR-SV (giant magnetoresistance-spin valve) device, simultaneously. It could be applied to the medical cooling system of the potassium titanylphosphate KTP) laser system for the therapy of a benign prostatic hyperplasia. The middle point of GMR-SV device was set to the near position of a high magnetic sensitivity with 2.8%/Oe. The sensitivity for the water level and water temperature of the fabricated sensor were $400\;m{\Omega}/mm$ and $100\;m{\Omega}/^{\circ}C$, respectively.

Local structural study of commercial grade MBa2Cu3O7-x (M = Y and/or Gd) coated conductors by polarized Raman spectroscopy

  • Moon, Hankyoul;Shin, Hae-Young;Jin, Hye-Jin;Jo, William;Yoon, Seokhyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.25-29
    • /
    • 2015
  • In 1987, M. K. Wu and Paul Chu discovered $Y_{1.2}Ba_{0.8}CuO_4$ (YBCO) with critical temperature ($T_c$) of 93 K. It has significantly lowered the cost of cooling of a material up to the point where superconductivity set in. Utilizing the cost reduction of attaining superconductivity and the vast amount of research to understand characteristics of high temperature oxide superconducting materials, there has been effort to use a high temperature superconductor as a coated conductor. It is important to characterize the materials precisely for stable performance before commercializing. We used polarized Raman scattering spectroscopy to study structural and stoichiometric information regarding $YBa_2Cu_3O_{7-x}$, $GdYBa_2Cu_3O_{7-x}$, and $GdBa_2Cu_3O_{7-x}$ produced by three leading groups of producing commercial grade high temperature superconductor coated conductors American Superconductor Corporation, Superpower, and SuNAM.

A study on the improvement of the thermal expansion formula of the insulating oil in electric facilities (전력설비 절연유 열팽창 계산식 개선에 관한 연구)

  • Rim, Seong-Hwang;Moon, Bong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.153-156
    • /
    • 2001
  • The transformer and the OF cable are cooled and insulated by insulating oils in their body. The insulating oil expands or contracts with the heat transfer according to the operating conditions of the electric facilities. So we install the $N_2$ gas tank connected with the insulating oil system to overcome the change. The change of the insulating oil volume for the operation temperature range must be calculated to decide the $N_2$ gas volume and to set the alarm point for safe operation. It is known that this change is proportional to the temperature change and to the insulating oil volume if the temperature change is small enough.[1][11] However this proportional formula has been accepted generally in the design of electric facilities for wide operation temperature range such as $40^{\circ}C{\sim}125^{\circ}C$. Hence, it makes large errors in calculation which car result in serious damage against safe operation of the electric facilities. This paper presents a improved method of calculating the accurate change of the insulating oil volume to insure the safe operation of electric facilities.

  • PDF

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.