• Title/Summary/Keyword: Set accelerator

Search Result 91, Processing Time 0.023 seconds

Research on the use of Therapeutic Linear accelerator Quality Control using EPR/alanine Dosimeter (EPR/알라닌 선량계를 이용한 치료용 선형가속기 정도관리 활용 연구)

  • Yoon-Ha Kim;Hyo-Jin Kim;Yeong-Rok Kang;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.239-248
    • /
    • 2024
  • Radiation therapy uses high energy, which can have side effects on the human body. Therefore, it is important to ensure that the appropriate dose is set for irradiation and to have confidence in the radiation produced by the generator. The EPR/Alanine dosimetry system is characterized by water equivalence, dose response linearity, and low fading, which makes it useful for quality control of radiation therapy equipment. In this study, we compared the signal and dose response curves of EPR/Alanine dosimetry by mass of alanine using 6 MV energy of a LINAC. An alanine dosimeter and EPR spectrometer from Burker, and a LINAC from Elekta, were used. A dose response curve and a 1st order regression equation were constructed from the irradiated dose and the EPR signal from the alanine dosimeter. We compared the signal magnitude and dose response curve with mass and checked the confidence through the measurement uncertainty of the dose response curve. As a result, it was found that the magnitude of the EPR signal increased by about 1.3 times at 64.5 mg, and the sensitivity of the dose response curve increased as the mass increased. The measurement uncertainty was evaluated to be between 5.84 % and 8.93 %. Through this study, it is expected that the EPR/alanine dosimetry system can be applied to the quality assurance and quality control of a LINAC.

Utilization of Tissue Compensator for Uniform Dose Distribution in Total Body Irradiation (전신방사선조사시 균등한 선량분포를 이루기 위한 조직보상체의 이용)

  • Park, Seung-Jin;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Nah, Byung-Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.233-241
    • /
    • 1994
  • Purpose : This study was performed to verify dose distribution with the tissue compensator which is used for uniform dose distribution in total body irradiation(TBI). Materials and methods : The compensators were made of lead(0.8mm thickness) and aluminum(1mm or 5mm thickness) plates. The humanoid phantom of adult size was made of paraffin as a real treatment position for bilateral total body technique. The humanoid phantom was set at 360cm of source-axis distance(SAD) and irradiated with geographical field size(FS) $144{\times}144cm^2(40{\times}40cm^2$ at SAD 100cm) which covered the entire phantom. Irradiation was done with 10MV X-ray(CLINAC 1800, Varian Co., USA) of linear accelerator set at Department of Therapeutic Radiology, Chonnam University Hospital. The midline absorbed dose was checked at the various regions such as head, mouth, mid-neck, sternal notch, mid-mediastinum, xiphoid, umbilicus, pelvis, knee and ankle with or without compensator, respectively. We used exposure/exposure rate meter(model 192, Capintec Inc., USA) with ionization chamber(PR 05) for dosimetry, For the dosimetry of thorax region TLD rods of $1x1x6mm^3$ in volume(LiF, Harshaw Co., Netherland) was used at the commercially available humanoid phantom. Results : The absorbed dose of each point without tissue compensator revealed significant difference(from $-11.8\%\;to\;21.1\%$) compared with the umbilicus dose which is a dose prescription point in TBI. The absorbed dose without compensator at sternal notch including shoulder was $11.8\%$ less than the dose of umbilicus. With lead compensator the absorbed doses ranged from $+1.3\%\;to\;-5.3\%$ except mid-neck which revealed over-compensation($-7.9\%$). In case of aluminum compensator the absorbed doses were measured with less difference(from $-2.6{\%}\;to\;5.3\%$) compared with umbilicus dose. Conclusion : Both of lead and aluminum compensators applied to the skull or lower leg revealed a good compensation effect. It was recognized that boost irradiation or choosing reference point of dose prescription at sternal notch according to the lateral thickness of patient in TBI should be considered.

  • PDF

Examination of Dose Change at the Junction at the Time of Treatment Using Multi-Isocenter Volumetric Modulated Arc Therapy (용적조절호형방사선치료(VMAT)의 다중치료중심(Multi- Isocenter)을 이용한 치료 시, 접합부(Junction)의 선량 변화에 대한 고찰)

  • Jung, Dong Min;Park, Kwang Soon;Ahn, Hyuk Jin;Choi, Yoon Won;Park, Byul Nim;Kwon, Yong Jae;Moon, Sung Gong;Lee, Jong Oon;Jeong, Tae Sik;Park, Ryeong Hwang;Kim, Se young;Kim, Mi Jung;Baek, Jong Geol;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.9-14
    • /
    • 2021
  • This study examined dose change depending on the reposition error of the junction at the time of treatment with multi-isocenter volumetric modulated arc therapy. This study selected a random treatment region in the Arccheck Phantom and established the treatment plan for multi-isocenter volumetric modulated arc therapy. Then, after setting the error of the junction at 0 ~ 4 mm in the X (left), Y (upper), and Z (inner and outer) directions, the area was irradiated using a linear accelerator; the point doses and gamma indexes obtained through the Phantom were subsequently analyzed. It was found that when errors of 2 and 4 mm took place in the X and Y directions, the gamma pass rates (point doses) were 99.3% (2.085) and 98% (2.079 Gy) in the former direction and 98.5% (2.088) and 95.5% (2.093 Gy) in the latter direction, respectively. In addition, when errors of 1, 2, and 4 mm occurred in the inner and outer parts of the Z direction, the gamma pass rates (point doses) were found to be 94.8% (2.131), 82.6% (2.164), and 72.8% (2.22 Gy) in the former part and 93.4% (2.069), 90.6% (2.047), and 79.7% (1.962 Gy) in the latter part, respectively. In the X and Y directions, errors up to 4 mm were tolerable; however, in the Z direction, error values exceeding 1 mm were beyond the tolerance level. This suggests that for high and low dose areas, errors in the direction same as the progress direction in the treatment region have a more sensitive dose distribution. If the guidelines for set-up errors are established at the institutional level through continuous research in the future, it will be possible to provide good quality treatment using junctions.

Compare to Evaluate the Imaging dose of MVCT and CBCT (Tomotherapy MVCT와 Linac CBCT의 Imaging dose 비교평가)

  • Yoon, Bo Reum;Hong, Mi Lan;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose : In case of the intensity modulated radiation therapy (IMRT) using Tomotherapy and linear accelerator (Linac), it was to compare and to evaluate the imaging dose of MVCT and CBCT that were performed daily for the correct set up of the patient. Materials and Methods : The human body model Phantom (Anderson rando Phantom, USA) was divided into the three parts as Head, Thorax, pelvis, and after GafChromic EBT3 film cut to the size of $0.5{\times}0.5cm2$.in the center of the recording area were situated on the ant, post, left, and right surface of the phantom and 2cm in depth from the ant, post, left, right, and center surface of the phantom, the surface dose and inner dose were measured repeatedly three times, respectively, using the tomotherapy (Hi Art) and the OBI of NovalisTx. The measured film calculated the output value by RIP version6.0 and then the average value of the dose was calculated by the one-way analysis of variance. Results : Using the human body model phantom, the results of MVCT and CBCT performance were that measurements of MVCT inner dose were showed $15.43cGy{\pm}6.05$ in the head, $16.62cGy{\pm}3.08$ in the thorax, $16.81cGy{\pm}5.24$ in the pelvis, and measurements of CBCT inner dose were showed $13.28{\pm}3.68$ in the head, from $13.66{\pm}4.04$ in the thorax, $15.52{\pm}3.52$ in the pelvis. The measurements of surface dose were showed in case of MVCT performance, $11.64{\pm}4.05$ in the head, $12.16{\pm}4.38$ in the thorax, $12.05{\pm}2.71$ in the pelvis, and in case of CBCT performance, $14.59{\pm}3.51$ in the head, $15.82{\pm}2.89$ in the thorax, $17.48{\pm}2.80$ in the pelvis, respectively. Conclusion : In case of Inner dose, the MVCT using MV energy showed higher than the CBCT using kV energy at 1.16 times in the head, at 1.22 times in the thorax, at 1.08 times in the pelvis, and in case of surface dose, the CBCT was higher than MVCT, at 1.25 times in the head, at 1.30 times in the thorax, at 1.45 times in the pelvis. Imaging dose was a small amount compared to the therapeutic dose but it was thought to affect partially to normal tissue because it was done in daily schedule. However, IMRT treatment was necessarily parallel with the IGRT treatment through the image-guide to minimize errors between planned and actual treatment. Thus, to minimize imaging dose that the patients receive, when planning the treatment, it should be set up a treatment plan considering imaging dose, or it must be performed by minimizing the scan range when shooting MVCT.

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF

Dose Evaluation at The Build Up Region Using by Wedge Filter (쐐기필터 사용에 따른 선량증가 영역에서 선량평가)

  • Kim, Yon-Lae;Moon, Seong-Kong;Suh, Tae-Suk;Chung, Jin-Beom;Kim, Jin-Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.341-348
    • /
    • 2014
  • Wedge filter could use to increase the dose distribution at the hot dose regions. We evaluated dose discrepancy at surface and build region in the infield and outfield that Metal Wedge (MW) and Enhance Dynamic Wedge (EDW) were interact with photon. In this paper, we used Gafchromic EBT3 film that had excellent spatial resolution, composed the water equivalent materials and changed the optical density without development. The set up conditions of linear accelerator were fixed 6 MV photon, 100 cm SSD, $10{\times}10cm^2$ field size and were irradiated 400 cGy at Dmax. The dose distribution and absorbed dose were evaluated when we compared the open field with $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ metal wedge and enhanced dynamic wedge. A $15^{\circ}$ metal wedge could increase the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. A $30^{\circ}$ metal wedge could decrease the surface and build up region dose than using a $30^{\circ}$ enhanced dynamic wedge. A $45^{\circ}$ metal wedge could decrease by large deviation the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. The dose of penumbra region at outfield were increased on the thick side but were decreased on the thin side. It could be decrease the surface dose and build up region dose, if the metal wedge filters were properly used to make a good dose distribution and not closed the distance of surface.

The Effect of Aquaplast on Surface Dose of Photon Beam (Aquaplast가 광자선의 표면선량에 미치는 영향)

  • Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.95-100
    • /
    • 1995
  • Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy Materials and Methods: To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in $25{\times}25{\times}3cm^3$ acrylic phantom and set on $25{\times}25{\times}5cm^3$ polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 100cm SSD for $5{\times}5cm^2$, $10{\times}10cm^2$ and $15{\times}15cm^2$ field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types of Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and Khan to correct overresponse of the Markus chamber. Results : The surface doses for open fields of $5{\times}5cm^2$, $10{\times}10cm^2$, and $15{\times}15cm^2$ were $79\%$, $13.6\%$, and $18.7\%$, respectively. The original Aquaplast increased the surface doses upto $38.4\%$, $43.6\%$, and $47.4\%$, respectively. For transformed Aquaplast, they were $31.2\%$, $36.1\%$, and $40.5\%$, respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by $0.2\%$, $1.7\%$, $3.0\%$ without Aquaplast, $0.2\%$, $1.9\%$, $3.7\%$ with transformed Aquaplast, respectively. Conclusion: The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax, however, were not affected by Aquaplast. In conclusion, although the use of Aquaplast in practice may cause some increase of skin and buildup region dose, reductioin of skin-sparing effect will not be so significant clinically.

  • PDF

The Effects of Hot Water Extraction of Wood Meal and the Addition of CaCl2 on Bending Strength and Swelling Ratio of Wood-Cement Board (목질(木質)의 열수추출(熱水抽出) 및 CaCl2 첨가(添加)가 목질(木質)-세멘트 보드의 휨강도(强度) 및 팽윤율(膨潤率)에 미치는 영향(影響))

  • Ahn, Won-Yung;Shin, Dong-So;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.49-53
    • /
    • 1985
  • The effects of pre-treatments, the hot water extraction of wood meal and the addition of chemical ($CaCl_2$) to wood-cement water system on the properties of wood-cement composite such as modulus of rupture (MOR), modulus of elasticity (MOE), water sorption ratio and swelling ratio of resulting boards were studied in this experiment. The wood meals through 0.83mm(20 mesh) and retained on 0.42mm(35 mesh) screen were prepared from Pinus densiflora S. at Z. and Larix leptolepsis G. For hot water extraction, 500 grams of wood meal for each species were heated to boiling with 1,500ml of distilled water in 2-liter beaker for 6 hours. Every 2 hours, the wood meals were washed with boiling distil1ed water and reheated to boiling again. After 6 hours boiling, the boiled wood particles were collected by pouring this particles on 200 mesh screen. The collected particles then washed twice with hot distilled water and dried for 24 hours in an oven at $109{\pm}20^{\circ}C$. A mixture of 663.4 grams of cement with 331.7 grams of wood meal based on oven-dry weight were dry-mixed in a plastic vessel. The mixture was kneaded with 497.6ml of distilled water in the ratio of 1.5ml of water to a gram of wood meal. To add calcium chloride to the mixture as an accelerator, $CaCl_2$ 4% solution by weight per volume, was added to pine-or larch-cement board in the ratio of 3% to cement weight. To set wood-cement board, this mixture was clamped at 30cm ${\times}$ 30cm, in thickness of 1.5cm for 3 days at room temperature, declamped and then placed at open condition for 17 days. The target density was 1.0. The four specimens sized to 5cm in width and 28cm in length were used for MOR and MOE test for each treatment. After MOR test, the tested specimens were cut to the size of 5cm ${\times}$ 5cm for water sorption and swelling test. The twenty specimens used to measure the water sorption ratio (soaking 24 hours) and ten of these were used for swelling ratio measurement The results obtained were as follows: 1) Larch was not suitable for wood-cement boards because larch-cement board developed no strength, but pine showed 97.9kg/$cm^2$ by hot water extraction. 2) To increase MOR, hot water extraction was more effective than the addition of $CaCl_2$ in pine and larch because the $CaCl_2$ addition was seemed to speed up the ratio of cement hydration without reacting with the wood substances. 3) The water sorption ratio was lowered by the addition of $CaCl_2$ to wood-cement system because the chemical additive accelerated the rate of cement hydration. 4) In pine-cement board, the swelling ratio from 0.37 to 0.42 percent was observed in length and the swelling ratio from 0.88 to 2.0 percent in thickness. As a rule, the swelling ratio of wood-cement board was very low and the swelling ratio in thickness was higher than in length.

  • PDF

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF