• Title/Summary/Keyword: Sesquiterpene

Search Result 270, Processing Time 0.027 seconds

The NMR Assignments of Torilin from Torilis japonica

  • Kang, Sam-Sik;Lee, Eun-Bang;Kim, Tae-Hee;Kim, Kyung-Ran;Jung, Jee-Hyung
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.284-286
    • /
    • 1994
  • A guaian type sesquiterpene, torilin, was isolated from the hexane extract of the fruits of Torilis japonica. The $^1H{\;}and{\;}^{13}C-sinals$ of this compound have been fully assigned utilizing $^1H-^1H$ COSY, HMQC, and HMBC experiments.

  • PDF

Dentatins: Sesquiterpene Glucosides from lxeris dentata

  • Chung, Ha-Sook;Woo, Won-Sik;Lim, Sook-Ja
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.323-326
    • /
    • 1994
  • Three new sesquiterpene lactone glucosides named dentatins A, B and C were isolated from lxeris dentata and the structures were elucidated as $3{\betha}, {\;}8{\betha}-dihydroxy-(1{\alpha}, 5{\alpha})guainan-10(14)-ene-6{\alpha}, {;\}12-olide-3-O-{\betha}-D-giucopyuranoside{\;}(1), {\;}3{\betha}, {\;}8{\betha}-dihydroxy-(1{\alpha}, {\;}5{\alpha})-guaian-4(15), {\;}10(14)-diene-6{\alpha}, {\;}12-plide-3-O-{\betha}-D-glucopyranoside{\;}(3)$, respectively, on the basis of spectral evidence.

  • PDF

Peroxide Constituents in the Natural Product Research (천연물 연구에서의 Peroxide 성분)

  • Lee, Kang-Ro
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.3
    • /
    • pp.145-155
    • /
    • 1991
  • Peroxides in natural products have been recently received a considerable attention due to their various biological and pharmacological properties. Nearly 300 peroxides have been isolated and structually characterized from natural sources, mainly as constituents of Compositae and marine sponge, and occur randomly in about 10 other plant families. Among peroxides studied, sesquiterpene endoperoxide, quinghaosu, has been already clinically applied as a new antimalarial drug. Based on the peroxides reported, structural classification, natural distribution and biological and pharmacological activities are reviewed. Color reagent and spectroscopic identification of peroxide are also described.

  • PDF

Studies on the Terpenoids in the Volatile Constituents of Liaoning Schisandra Chinensis Baillon

  • Hou, Dongyan;Zhang, Weihua;Hui, Ruihua
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.505-509
    • /
    • 1995
  • The terpenoids in the volatile constituents of Liaoning Shcisandra Chinesis Baillon have been determined by the analytical method of GC/MS. Thirty terpenoids molecular structure were characterized. They are 11.89% monterpenes, 4.60% monoterpene oxides, 58.74% sesquiterpene hydrocarbons, and 1.62% oxygen-containing sesquiterpenoids in the total volatile constituents quantified by chromatograph. Among them, the sesquiterpene make up the characteristic constituents. Every terpenoid constituent percent content was obtained using area normalization method of HP-59970 chemstation.

  • PDF

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Biological Activities of Sesquiterpene Lactones isolated from Several Compositae Plants Part 1 - Cytotoxicity against Cancer Cell Lines - (수종의 국화과 식물에서 분리한 Sesquiterpene Lactone들의 생리활성(제1보) - 암세포주에 대한 세포독성 -)

  • Jang, Dae-Sik;Park, Ki-Hun;Kim, Hwan-Mook;Hong, Dong-Ho;Chun, Hyo-Kon;Kho, Yung-Hee;Yang, Min-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.3
    • /
    • pp.243-247
    • /
    • 1998
  • A diverse panel of human tumor cell lines and a mouse melanoma cell line (B16-F1) were used for the cytotoxicity test of the nine sesquiterpene lactones with ${\beta}-methylene-{\gamma}-lactone$ group isolated from Hemisteptia lyrata, Chrysanthemum zawadskii and Chrysanthemum boreale. In the cell adhesion inhibitory activity test against B16-F1 mouse melanoma cell, hemistepcin B, cumambrin B, costunolide and tulipinolide were shown significant activities with $IC_{50}$ range of 2.2, 4.1, 0.9 and $0.3\;{\mu}g/ml$, respectively. In the cytotoxicity test against human tumor cells, the most active compound was costunolide having $IC_{50}$ values of below $0.3\;{\mu}g/ml$ against all the tested cell lines except for UACC62. Cumambrin A, hendelin and costunolide exhibited more strong activity against HCT15 and UO-31 cell lines than a positive control, adriamycin. All tested compounds showed an $IC_{50}$ values of below $5.0\;{\mu}g/ml$ against all the tested cell lines.

  • PDF

Molecular Cloning and Characterization of Sesquiterpene Cyclase cDNAs from Pepper Plant Infected with Phytophthora capsici

  • Kim, Jong-Bum;Lee, Sung-Gon;Ha, Sun-Hwa;Lee, Myung-Chul;Ye, Wan-Hye;Lee, Jang-Yong;Lee, Shin-Woo;Kim, Jung-Bong;Cho, Kang-Jin;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • Pepper plants (Nogkwang, 60-day old) were inoculated with Phytophthora capsici to induce sesquiterpene cyclase associated with the biosynthesis of phytoalexin (capsidiol), a substance related to the defense against pathogens in plants. One day after inoculation, mRNA was isolated from the root, cDNA synthesized, and a library constructed in a ZAP express XR vector. The efficiency was $2{\times}10^6pfu/{\mu}g$. Sesquiterpene cyclase cDNA from Hyoscyamus muticus was labeled with $^{32}P$ and used as a probe for screening the cDNA library. After the third screening, 25 positive clones were selected. Through restrictive digestion and DNA gel-blot analysis, six different cyclase gene expressions were identified. PSC1B sequences of the six clones were determined, which were 1966 base pairs encoded 556 amino acids with an expected molecular weight of 63.8 kDa. Response against the pathogen was different between the resistant and susceptible peppers. After the infection of the pathogen, the expression of PSC genes continued in the resistant peppers while the plants were alive. The expression in the susceptible peppers lasted for only 4 days.

  • PDF