• Title/Summary/Keyword: Servovalve

Search Result 43, Processing Time 0.031 seconds

Premature Failure Analysis of Servovalve Components for a Thermal Power Plant

  • Chang, Sung-Yong;Chang, Joong-Chel;Kim, Bum-Soo;Seo, Min-Woo;Choi, Chel-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.708-714
    • /
    • 2011
  • The premature failure of a servovalve used for six months in a thermal power plant has been analyzed. The servovalve was made of stainless steel, containing 16Cr-0.44Mo, along with other elements. An overload of oil-supply pumping and an abnormal increase in the oil flux were observed during operation. A study revealed that erosion and corrosion could be the main causes of the failure. The visual examination of the servovalve did not show any appreciable damage. However, corrosion and erosion of the servovalve were observed using scanning electron microscopy (SEM). Upon examination of the servovalve, the corrosion was found to have occurred throughout the bushing and spool; however, erosion occurred at only the edge-side. In addition, the condition of the electrohydraulic control system (EHC) oil was investigated with respect to its satisfaction of the management standard.

Performance Improvement of a Nozzle/Ball Type Servovalve with Variant Drain Orifice (변동 배유 오리피스를 갖는 노즐/볼형 서보밸브의 성능 개선)

  • Nam Y.J.;Kim K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.255-256
    • /
    • 2006
  • This paper presents the performance improvement of a Nozzle/Ball type servovalve with variant drain orifice. First of all, the configuration of the novel servovalve is proposed. Then, the static characteristics are investigated under blocked load condition, and its dynamic characteristics are analyzed by using the linearized flow-pressure relationship. Finally, the performance at the null condition of the proposed servovalve is numerically evaluated through the comparison study with the convention at counterparts.

  • PDF

In-Process Diagnosis of Servovalve Wear using Leakage Flow Measurement (누설 유량 계측에 의한 서보밸브 마멸의 인-프로세스 진단)

  • Kim K.H.;Han G.S.;Lee J.C.;Ham Y.B.;Kim S.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • In-process diagnosis is essential to achieve predictive maintenance in industrial plants. An in- process diagnosis method was proposed for hydraulic servo systems, which was based upon leakage flow measurement. Leakage due to servovalve wear was analysed and modeled mathematically far computer simulation work. The key idea of diagnosis algorithm is that when monitoring signals, such as servovalve input and load displacement are in steady states, the return-line flow of hydraulic servo systems can be regarded as null-leakage of servovalve. Virtual experiments were performed to ensure effectiveness of the proposed diagnosis method.

  • PDF

In-Process Diagnosis of Servovalve wear in Hydraulic Force Control Systems (유압실린더 힘 제어계의 인-프로세스 서보밸브 마모진단에 관한 연구)

  • Kim, S.D.;Jeon, S.H.;Chang, Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.22-30
    • /
    • 2009
  • An in-process method of diagnosing the spool wear of hydraulic servovalves was explored. The diagnostic method discussed in this paper is for force-control hydraulic servo systems. The key principle used is that pressure sensitivity of a servovalve drops as the valve spool wears out so that it is possible to determine the spool condition by monitoring pressure sensitivity. A diagnostic algorithm was developed and evaluated through numerical simulation and experiments. Two major steps of diagnosis are the evaluation of null bias of the servovalve and the approximation of pressure sensitivity, both of which could be successfully done during normal operation of a servo system. The difference between a new servovalve and a worn valve could be clearly detected in-process, and the diagnostic test was found to be repeatable.

  • PDF

An Analysis of the Effect of a Variant Drain Orifice Damping on an Electrohydraulic Servovalve Flapper-Nozzle Stage (전기유압 서보밸브 플랩퍼-노즐에 대한 변동 배유 오리피스의 영향 해석 1)

  • Lee, Jae-Cheon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.50-59
    • /
    • 1999
  • The effect of a variant drain orifice damping on the characteristics of a servovalve flapper-nozzle stage is analyzed. Steady-state characteristics of flapper-nozzle stage and the linearized dynamics of flapper-nozzle assembly with a spool valve show that the variant drain orifice damping could improve such null performance characteristics as null pressure sensitivity and linearity of gain function. Generalized design criterion and a sufficient condition for servovalve stability are also established.

  • PDF

Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements (적층식 압전소자를 이용한 고속 서보밸브 시스템의 개발)

  • 방영봉;이교일;임원규;주춘식;허재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.733-736
    • /
    • 2003
  • This paper presents two systems of two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. Two flapper moving mechanisms proposed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental results show that the first flapper moving mechanism has the frequency response of over 500 Hz and the second one has the response of over 600 Hz. And the first simplified servovalve system rising the first flapper moving mechanism has the frequency response of about 150 Hz, and the second system has the response of about 300 Hz at the supply pressure of 210 bar

  • PDF

Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements (적층식 압전소자를 이용한 고속 서보밸브 시스템의 개발)

  • 방영봉;주춘식;이교일;심영보
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • This paper presents a two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. The flapper moving mechanism developed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental result shows that this flapper moving mechanism has the frequency response of about 600 Hz. And a simplified servovalve system using this flapper moving mechanism has the frequency response of about 300 Hz at the supply pressure of 210 bar.

Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements

  • Joo, Choon-Shik;Bang, Young-Bong;Lee, Kyo-Il;Shim, Young-Bo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.29-37
    • /
    • 2003
  • This paper presents a two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. The flapper moving mechanism developed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental result shows that this flapper moving mechanism has the frequency response of about 600 Hz. And a simplified servovalve system using this flapper moving mechanism has the frequency response of about 300 Hz at the supply pressure of 210 bar.

Study on Bandwidth Frequency of Servovalve based on Metering Cylinder (실린더를 이용한 서보 밸브 대역폭 주파수의 측정에 관한 연구)

  • Kim, S.D.;An, Wen-Long;Jeon, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.44-51
    • /
    • 2015
  • In this study, a metering cylinder was constructed, and the velocity obtained from the linear velocity transducer (LVT) of the cylinder piston was used to evaluate the dynamic performance of an electro-hydraulic servovalve. Frequency response experiments involving the spool displacement and piston velocity (LVT signal) were conducted with different input signal amplitudes, hydraulic pipe diameters, and supply pressures. The spool displacement signal accurately reflected the performance of the servovalve. Meanwhile, the -3 dB bandwidth frequency of the LVT signal was similar to the spool displacement signal, except for a small-amplitude input signal, and the $-90^{\circ}$ phase lag bandwidth frequency showed some differences.

Error Evaluation of Linearized Equation for a Servovalve in Hydraulic Control Systems (유압 제어계에서 서보밸브 선형화 방정식의 오차 평가)

  • Kim, Tae-Hyung;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.779-788
    • /
    • 2003
  • This study evaluates the approximation errors of the existing linearized equation for a servovalve nonlinear flowrate characteristic. At first, the errors are evaluated on flowrate/pressure characteristics diagrams. Subsequently, they are investigated with time response simulation results for several hydraulic control systems. To enable systematic evaluation of computational error, the authors propose three kinds of equations with restructured forms of the existing linearized equation. As results of the evaluations, it is ascertained that comparatively good computational accuracy can be achieved with the existing linearized equation when both an operating point for the linearized equation and operating range of the hydraulic system stay near the flowrate axis of the flowrate/pressure characteristics diagram. In addition, the results show that comparatively big computational error may occur when operating range of a hydraulic system stay apart from the flowrate axis of the flowrate/pressure characteristics diagram.