• 제목/요약/키워드: Servo-valve

검색결과 194건 처리시간 0.029초

서보밸브 스풀-슬리브 형상공차가 압력 정특성에 미치는 영향 연구 (Effect of Spool-Sleeve Geometry on Static Pressure Characteristics of Servo Valves)

  • 김성동;손성회;함영복
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.34-42
    • /
    • 2016
  • This study studied how the clearance, overlap and mismatch errors of spool-sleeve affect the static pressure characteristics of a servo valve. A computer simulation model was established as a direct acting servo valve and a series of simulations was conducted for various values of clearance, overlap and mismatch errors. Pressure gain decreased as the clearance increased. The overlap also affects the pressure gain and was similar to the effect of clearance. Asymmetry of the pressure plot got worse and worse as the mismatch error increased.

유전자 알고리즘과 콤플렉스법에 의한 직접구동형 서보밸브의 제어기 상수값 설계 (Controller Parameters Design of Direct Drive Servo Valve Using Genetic Algorithm and Complex Method)

  • 이성래
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.475-481
    • /
    • 2013
  • 직접구동형 서보밸브의 제어시스템은 비선형적이며 밸브스풀에 미치는 유체력의 영향은 매우 크고 부하압력의 크기에 좌우된다. 제어시스템의 설계요구조건을 만족시키기 위해, 제약직접탐색방법인 유전자 알고리즘과 콤플렉스법을 적절히 활용하여 진상-지상제어기 및 미분피드백제어기의 최적 상수값을 탐색하였다. 최적 제어기 상수값을 대입하여 제어시스템을 시뮬레이션한 결과 설계요구조건을 만족하였다.

CFD를 이용한 유압 서보밸브의 열유체 해석 (THD Analysis of a Hydraulic Servo Valve Using CFD)

  • 정요한;박태조
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권1호
    • /
    • pp.8-13
    • /
    • 2014
  • Hydraulic servo valves are widely used in various fluid power systems because of their fast response and precision control. In this paper, we studied the effect of metering notch shapes and amount of their openings on the flow characteristics within the spool valve using a computational fluid dynamic (CFD) code, FLUENT. To obtain the results for more realistic operating conditions, viscous heating due to the jet flow and viscosity variation of the hydraulic fluid with temperature were considered. For two types of notch shape, streamlines, oil temperature and viscosity distributions, and variations of flow and friction forces acting on spool were showed. The flow and friction forces affected by the metering notch shapes and their openings, and oil temperature rise near metering notch was significant enough to results in the jamming phenomenon. A thermohydrodynamic (THD) flow analysis adopted in this paper can be used in optimum design of hydraulic servo valves.

공기압 서보 시스템의 위치 제어 및 시뮬레이션에 관한 연구 (A Study on the Position Control and Simulation of Pneumatic Servo System)

  • 최서호;홍예선;이정오
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.102-113
    • /
    • 1996
  • An experimental and theoretical study on a pneumatic servo system has been conducted using on-off valves and a pneumatic cylinder. A V/I converter has been designed for rapid rising and falling of the solenoid current, which significantly improves the positioning accuracy and settling time of the servo system by shortening the valve opening time. Pulse width modulation was modified to operate on-off valves effectively. A state feedback controller which feeds back position, velocity and acceleration is used to control the system. The influence of controller gains on the system performance is studied to develop a scheme that automatically adjusts the gains using fuzzy logic theory. It is shown experimentally that the proposed fuzzy logic tuner works satisfactorily. A new method for measurements of valve effective areas is proposed, and a partially polytropic model is applied to simulation of the pneumatic system. Simulated results show good agreement with experimental data.

  • PDF

보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석 (A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot)

  • 조정산
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권2호
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.

제어관점에서의 부하감지형 유압시스템의 특성 (Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control)

  • 김성동
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.

보조 동력 장치 연료 공급용 서보밸브의 토크모터 전자기 해석 (Electromagnetic Analysis on the Torque Motor of Servo Valve for the Fuel Supply System of Auxiliary Power Unit)

  • 장세명;장강원;정헌술;이동호
    • 항공우주시스템공학회지
    • /
    • 제1권3호
    • /
    • pp.7-12
    • /
    • 2007
  • As a main part of an utility helicopter, the APU(Auxiliary Power Unit) has a solenoid valve system operated with a torque motor, which controls the flow rate in the fuel supply system. In this paper, we solved the Maxwell potential equations to analyze the electromagnetic force in the torque motor, and some additional analytic methods are used to compute the quantity of torque produced by the torque motor for the given circuit current. For the convenience, small displacement is assumed, and only magneto-static problem is considered for the two-dimensional cross section. The result will be compared with the three-dimensional analysis that will be studied in the near future.

  • PDF

농용(農用)트랙터의 3점 히치 시스템의 마이크로컴퓨터 제어(制御)(II) -성능시험(性能試驗)- (Microcomputer Control of Electronic-Hydraulic Three-Point Hitch for Agricultural Tractor(II) -Performance Test-)

  • 류관희;유수남;김영상
    • Journal of Biosystems Engineering
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 1992
  • This study was conducted to develop an electro-hydraulic three-point hitch control system using an electro-hydraulic servo valve and microcomputer and to investigate the performance of the three-point hitch control system through indoor and field experiments. 1. The results from indoor experiments coincided with those from computer simulation reported in the previous paper. However, the draft control with the value 4 of Kd showed a slight sustained oscillation after it reached the draft set. 2. From the field experiments, it appeared that the RMS errors increased with the ground speed of tractor. In position control, the three-point hitch control system with electro-hydraulic servo valve showed better performance than that with on-off electro-magnetic valve in the ground speed less than 1.6 m/s. In draft control, however, there was no significant differece in performance between those two systems. 3. In depth control, the both types of electro-hydraulic three-point hitch control system showed better performance than the conventional mechanical-hydraulic three-point hitch control system.

  • PDF

염소성분에 의한 터빈 EHC계통 손상에 관한 연구 (A Study on the Trouble of Turbine EHC System by Chloride)

  • 김성민;양천규;윤기남;정재원;신을령
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.366-372
    • /
    • 2000
  • In a power plant, it is generally accepted that a turbine governor system is necessary to control amount of steam supply toward the turbine system. There are many kinds of trouble at this governor system, which is recognized one of the most sensitive systems in the power plant. Especially we have experienced the internal leakage of motorization oil of servo valve. In the study, we investigated the mechanism of an internal leakage such as erosion by foreign materials and corrosion by chemical reaction between chloric healed oil and motorization oil. A precautionary measures is also performed to help the field service engineers.

  • PDF

압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어 (Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control)

  • 이창돈;이진걸
    • 유공압시스템학회논문집
    • /
    • 제1권3호
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF