• Title/Summary/Keyword: Servo system

Search Result 1,611, Processing Time 0.034 seconds

A Study on the Parameters Estimation of Electro-Hydraulic Servo Systems Using RMSM (RLSM 방법을 이용한 전기 유압 서보 시스템의 파라미터 추정에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1510-1514
    • /
    • 2011
  • In this paper, linear discrete model of the electro-hydraulic servo system are made for parameters estimation. The parameters of electro-hydraulic servo system are estimated using the recursive least square method. Persistent excitation conditions are studied in order to estimate parameters of electro-hydraulic servo system to real values and parameters estimation affections are studied due to the forgetting factors variation. As the results, An parameter estimation method has been synthesized for minimizing the error between reference and error.

Motion Control of Servo Cylinder Using Neural Network (신경회로망을 이용한 서보 실린더의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.

Brushed Servo-Motor Control System for Industrial Robot (산업용 로봇을 위한 직류 서보전동기 제어시스템)

  • Sun-Hag Hong
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • In this paper, brushed servo control system for industrial robot is realized under GUI environment. Brushed servo motor has 400W capacities, 1000ppr optic encoder and electric brake load. Especially, driving unit is composed of full-bridge MOSFET semiconductors with 9540 and 540 FET ICs. Control unit has PIC 16C74 microprocessor[l,2,3], RS-232 communication ports, URD current sensor, and GAL 16R8ACN. Servo control system is controlled by PID control method[5,8] with varying control parameters and load capacities. Brushed servo control systems which are proposed in this raper are applied to industrial robot control system.

  • PDF

Implemented Circuits of Fuzzy Inference Engine for Servo Control by using Decomposition of $\alpha$-Level Set ($\alpha$-레벨 집합 분해에 의한 서보제어용 퍼지추론 연산회로 구현)

  • Hong Jeng-pyo;Hong Soon-ill
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.90-96
    • /
    • 2005
  • This paper presents hardware scheme of fuzzy inference engine, based on α-level set decomposition of fuzzy sets for fuzzy control of DC servo system. We propose a method which is directly converted to PWM actuating signal by a one body of fuzzy inference and defuzzification. The influence of quantity α-levels on input/output characteristics of fuzzy controller and output response of DC servo system is investigated. It is concluded that quantity α-cut 4 give a sufficient result for fuzzy control performance of DC servo system. The experimental results shows that the proposed hardware method is effective for practical applications of DC servo system.

Real Time Tilt Servo Control of The Holographic Data Storage System (홀로그래픽 정보 저장 장치에서의 실시간 틸트 서보 제어)

  • Moon, Jae-Hee;Kim, Sang-Hoon;Yang, Jun-Ho;Yang, Hyun-Seok;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • The purpose of this paper is real time tilt servo control of the holographic data storage system. Holographic data storage device is a next generation data storage device with high storage density, high transfer rate and short access time. This device is very sensitive to a disturbance due to the enormous storage density. As to the recording material changed disc type, the media continuously vibrates as the disc rotates. When disc rotates, deviation, eccentricity and unbalance disturbance are occurred. This disturbances cause disc tilt, finally reference beam does not illuminates to correct incidence angle. Therefore real time tilt servo control is essential. In this paper, the algorithm is proposed to make real time tilt detection in angle multiplexing of the holographic data storage system with an additional servo beam and the experiments are performed.

  • PDF

Implement of Fuzzy Inference Hardware for Servo Control Using $\alpha$ -level Set Decomposition ($\alpha$-레벨집합 분해에 의한 서보제어용 퍼지추론 하드웨어의 구현)

  • Hong Soon-ill;Lee Yo-seob;Choi Jae-yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.662-665
    • /
    • 2001
  • As the fuzzy control is applied to servo system the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$-level set decomposition of fuzzy sets by quantize $\alpha$-cuts. This method can be easily implemented with analog hardware. The influence of quantization levels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of do servo system. It examined useful with experiment for dc servo system.

  • PDF

The Design of Position Controll System by Model Following Servo Controller (Model 추종형 Servo Controller에 의한 위치제어계의 설계)

  • 장기효;하홍곤;홍창희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • In this paper the design and construction of discrete model following servo dontroller on the position control system is proposed. The operational time delay of the plant in the controller which is proposed, is considered and the system which is added by the integral compensation in first order difference equation is constructed. By applying the optimal regulator method to the system, the method which find the optimal state feedback gain is developed theoretically. The output of a model which is correspond to a DC Servo motor follow quickly the speed response of a DC Servo motor and the velocity error in ansteady-state is reduced in zero and the position response is controlled correctly, the performance of the controller is contoller is confirmed by Computer Simulation.

  • PDF

MODELING AND CONTROL OF A MAGNETIC SERVO-LEVITATED FAST-TOOL SERVO SYSTEM (자기부상 초정밀 고속 공구 서보 시스템의 모델과 제어)

  • Hector-M.Gutierrez;Paul-I.Ro
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.348-353
    • /
    • 1994
  • Magnetic Servo Levitation (MSL) has been proposed as a method to drive a fast-tool servo system. This paper discusses some fundamental control and modeling issues in the development of a long-range high-bandwidth fast-tool servo based on MSL. A resursive linear model is developed to describe the system's dynamics linear model is developed to describe the system's dynamics, and further used to discuss controller design. For a given controller architecture, the performance of two controllers is then compared, one based on an approximation to the inverse plant dynamics, the second based on a adaptive neural network.

  • PDF

Fault Tolerance Design for Servo Manipulator System Operating in a Hot Cell

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2467-2470
    • /
    • 2003
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors are weak to radiations, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, hardware and software redundancy have been considered. In case of hardware, radioactive resistant electric components such as cables and connectors have been adopted and motors driving a transport have been duplicated. In case of software, a reconfiguration algorithm accommodating one motor's failure has been developed. The algorithm uses redundant axis to recover the end effector's motion in spite of one motor's failure.

  • PDF

Servo Filter Design for KSR-III Gimbal Actuation System (KSR-III 김발엔진 구동장치 서보필터 설계)

  • Sun, Byung-Chan;Park, Yong-Kyu;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.83-92
    • /
    • 2004
  • This paper concerns servo filter design for KSR-III gimbal engine actuation system. When the actuator system is attached to engine mount frame, unexpected resonant modes in low frequency can occur and make the control system unstable. In order to prevent the resonance in the actuation system, a proper lowpass servo filter is designed. Based on the dynamic test data including the resonant effect, the shape of the servo filter is determined, and then the corresponding parameters are optimally designed. The best solution is finally selected via dynamic tests including the servo filter.