• 제목/요약/키워드: Serviceability limit

검색결과 162건 처리시간 0.022초

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.

Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

  • Kujala, Pentti;Korgesaar, Mihkel;Kamarainen, Jorma
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.376-384
    • /
    • 2018
  • Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code.

Scale model experimental of a prestressed concrete wind turbine tower

  • Ma, Hongwang;Zhang, Dongdong;Ma, Ze;Ma, Qi
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.353-367
    • /
    • 2015
  • As concrete wind-turbine towers are increasingly being used in wind-farm construction, there is a growing need to understand the behavior of concrete wind-turbine towers. In particular, experimental evaluations of concrete wind-turbine towers are necessary to demonstrate the dynamic characteristics and load-carrying capacity of such towers. This paper describes a model test of a prestressed concrete wind-turbine tower that examines the dynamic characteristics and load-carrying performance of the tower. Additionally, a numerical model is presented and used to verify the design approach. The test results indicate that the first natural frequency of the prestressed concrete wind turbine tower is 0.395 Hz which lies between frequencies 1P and 3P (0.25-0.51 Hz). The damper ratio is 3.3%. The maximum concrete compression stresses are less than the concrete design compression strength, the maximum tensile stresses are less than zero and the prestressed strand stresses are less than the design strength under both the serviceability and ultimate limit state loads. The maximum displacement of the tower top are 331 mm and 648 mm for the serviceability limit state and ultimate limit state, respectively, which is less than L/100 = 1000 mm. Compared with traditional tall wind-turbine steel towers, the prestressed concrete tower has better material damping properties, potential lower maintenance cost, and lower construction costs. Thus, the prestressed concrete wind-turbine tower could be an innovative engineering solution for multi-megawatt wind turbine towers, in particular those that are taller than 100 m.

양각 거더교의 정적·동적특성에 관한 연구 (A Study on the Static and Dynamic Characteristics of Raised Girder Bridges)

  • 이지연;김성;박승진
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.851-858
    • /
    • 2023
  • 연구목적: 종래의 PSC 거더에 비해 단면 효율이 개선된 양각 거더교의 구조적 안전성을 확보하기 위한 연구를 수행하였다. 이를 위해 거더 길이, 높이, 폭과 같은 단면의 제원을 정하고 강연선의 배치를 설계하여 정적 및 동적 하중에 의한 양각 거더의 실질적인 성능을 검증하였다. 연구방법: 정적 성능 실험은 1차 및 2차 정적 하중에 대한 처짐, 균열 등의 거동 응답을 측정하여 사용성 한계상태를 검토하였다. 또한, 동적 하중 재하 실험은 시간에 따른 가속도, 변위 거동 응답을 측정하여 고유진동수 및 감쇠비를 산정하여 사용성 한계상태를 검토하였다. 연구결과: 정적 성능 실험 결과 최대 재하하중 기준 처짐값은 안정적인 거동을 나타났고, 최대 재하하중 수준에서 측정된 균열폭은 매우 작아서 사용성 한계상태를 만족하는 것으로 나타났다. 또한, 동적 하중 재하 실험 설계 시 산정된 고유진동수를 상회하는 고유진동수가 나타났으며, 현행 규정에 만족하는 감쇠비를 확보하는 것으로 나타났다.

Probabilistic computation of the structural performance of moment resisting steel frames

  • Ceribasi, Seyit
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.369-382
    • /
    • 2017
  • This study investigates the reliability of the performance levels of moment resisting steel frames subjected to lateral loads such as wind and earthquake. The reliability assessment has been performed with respect to three performance levels: serviceability, damageability, and ultimate limit states. A four-story moment resisting frame is used as a typical example. In the reliability assessment the uncertainties in the loadings and in the capacity of the frame have been considered. The wind and earthquake loads are assumed to have lognormal distribution, and the frame resistance is assumed to have a normal distribution. In order to obtain an appropriate limit state function a linear relation between the loading and the deflection is formed. For the reliability analysis an algorithm has been developed for determination of limit state functions and iterations of the first order reliability method (FORM) procedure. By the method presented herein the multivariable analysis of a complicated reliability problem is reduced to an S-R problem. The procedure for iterations has been tested by a known problem for the purpose of avoiding convergence problems. The reliability indices for many cases have been obtained and also the effects of the coefficient of variation of load and resistance have been investigated.

상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석 (Commercial Finite Element Program-based Reliability Analysis of Dam Structures)

  • 허정원;이정학
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

연속 프리캐스트 합성바닥판의 비탄성 거동 (Inelastic Behavior of Continuous Precast Composite Slabs)

  • 심창수;정영수;민진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

자기부상열차와 가이드웨이 상호작용을 고려한 가이드웨이 구조물의 진동사용성 처짐 한계 (Deflection Limits based on the Vibration Serviceability of Guideway Structures Considering Maglev Train-Guideway Interaction)

  • 이진호;김성일
    • 한국철도학회논문집
    • /
    • 제20권1호
    • /
    • pp.111-119
    • /
    • 2017
  • 이 연구에서는 자기부상열차-가이드웨이 상호작용을 고려하여 자기부상철도 가이드웨이 구조물의 진동사용성을 고려한 처짐한계를 제안한다. 간략화된 자기부상철도 시스템의 운동방정식을 유도하고, 자기부상력 제어를 위한 되먹임 상수가 부상공극의 변동량이 최소가 되도록 최적화한다. 이 시스템에 대하여 자기부상열차의 운행속도, 가이드웨이 경간장, 2차 현가장치의 고유진동수와 감쇠비를 변화시켜 가며, 부상공극의 크기와 차체의 연직가속도에 대한 사용성 기준을 만족하는 가이드웨이의 처짐한계를 조사한다. 해석 결과로부터 자기부상열차의 2차 현가장치에 대한 요구 조건과 가이드웨이 구조물이 만족시켜야 하는 처짐한계를 제안한다.

강섬유보강 철근콘크리트구조물에 있어서의 균열폭 계산 (Calculation of Crack Width in SFRC Structures)

  • 강보순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.579-584
    • /
    • 2001
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit states. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

  • PDF

강섬유철근콘크리트 구조물의 균열폭 계산 (Calculation of Crack Width in SFRC Structures)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.293-298
    • /
    • 2005
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of sleet fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit stales. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.