• Title/Summary/Keyword: Serviceability Assessment

Search Result 86, Processing Time 0.019 seconds

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

Improvement of the Estimation Method for Harbor Tranquility of Fishery Harbor (어항의 항내 정온도 평가사례 및 개선방안)

  • Tac, Dae-Ho;Kim, Gui-Young;Jeon, Kyeong-Am;Lee, Dae-In
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.637-644
    • /
    • 2015
  • In order to estimate harbor tranquility, it is needed to simulate wave propagation in a harbor by using both methods under abnormal wave condition and normal wave condition. The problem is the latter case was not simulated in the statement for the Sea Area Utilization Conference. As harbor calmness about normal wave condition has the same meaning as harbor serviceability, in order to assess harbor tranquility, it is needed to survey wave data for long periods but the survey was not done by reason of a lack of budget and shortage of time for plan. It is more important to make a plan for minimizing environmental impact and to assess an improvement of fisherman's living environmental as the assessment of the harbor serviceability is related with the propriety of the plan. In order to assess it, it is needed to understand it clearly, survey for long period of wave data, and clarify the procedure for computation of it. And also providing wave data like tide and tidal current data from KHOA (Korea Hydro graphic and Oceanographic Agency) and making a guideline for assessing it are needed.

On methods for extending a single footfall trace into a continuous force curve for floor vibration serviceability analysis

  • Chen, Jun;Peng, Yixin;Ye, Ting
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.179-196
    • /
    • 2013
  • An experimentally measured single footfall trace (SFT) from a walking subject needs to be extended into a continuous force curve, which can then be used as load for floor vibration serviceability assessment, or on which further analysis like discrete Fourier transform can be conducted. This paper investigates the accuracy, applicability and parametrical sensitivity of four extension methods, Methods I to IV, which extends the SFT into a continuous time history by the walking step rate, stride time, double support proportion and the double support time, respectively. Performance of the four methods was assessed by comparing their results with the experimentally obtained reference footfall traces in the time and frequency domain, and by comparing the vibrational response of a concrete slab subjected to the extended traces to that of reference traces. The effect of the extension parameter on each method was also explored through parametrical analysis. This study finds that, in general, Method I and II perform better than Method III and IV, and all of the four methods are sensitive to their extension parameter. When reliable information of walking rate or gait period is available in the test, Methods I or II is a better choice. Otherwise, Method III, with the suggested extension parameter of double support time proportion, is recommended.

Practical Vibration Analysis of Deck Floor Slab (데크 바닥판 구조물의 실용적인 진동해석)

  • Kim, Gee-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • As long-span and light-weight deck floor slab are flexible and have low inherent damping, the significant floor vibration could be induced by residents' activities. These floor vibrations affect to safety and serviceability of building structures. So the vibration criteria are applied to the quality assessment of building structure. Therefore, the accurate vibration analysis should be performed for the correct assessment of deck floor slab. In this paper, practical analysis method with considering orthotropic rigidity of deck floor is proposed tot the accurate vibration analysis of dock floor slabs with form deck plates.

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

Displacement Measuring Method using Terrestrial LiDAR for Safety and Serviceability Monitoring of Steel Beams (지상 LiDAR를 이용한 철골보의 안전 및 사용성 모니터링을 위한 변위 계측기법)

  • Lee Hong-Min;Park Hyo-Seon;Lee Im-Pyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.190-197
    • /
    • 2005
  • To monitor the safety and serviceability of a structures, structural responses including displacements due to various design and unexpected loadings must be measured. The maximum displacement and its distributions of a structure can be used as a direct assessment index on its stiffness. For this reason, there have been diversely studied on measuring of the maximum displacement of a structure. However, there is no practical method for measuring displacement of a structure. Therefore, in this paper, new displacement measuring method is developed and accuracy of LiDAR is examined in detail for development of a new method for measuring displacement of a structure.

  • PDF

Implications of full-scale building motion experience for serviceability design

  • Denoon, Roy O.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.537-557
    • /
    • 2011
  • While there are a number of guidelines used throughout the world in the assessment of acceptability of tall building accelerations, none are based on systematically conducted surveys of occupant reaction to wind-induced motion. In this study, occupant response data were gathered by both a self-reporting mechanism and by interviewer-conducted surveys in control tower structures over a period of four years. These two approaches were designed in conjunction with experimental psychologists to ensure unbiased reporting. The data allowed analysis of perception thresholds and tolerability at different building frequencies and in different wind climates. The long-term nature of the studies also allowed an investigation of the causes and effects of adaptation to building motion. As the surveys were designed to allow multiple use during single storms, the effects of exposure duration were investigated. A final exit survey was conducted at the primary survey location to investigate views of the acceptability of wind-induced motion and the factors underlying these views. The findings of the field studies indicate that none of the currently used acceleration guidelines address all of the factors that contribute to occupant dissatisfaction. An alternative framework for assessing acceleration acceptability is proposed.

Sensitivity analysis of mechanical behaviors for bridge damage assessment

  • Miyamoto, Ayaho;Isoda, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.539-558
    • /
    • 2012
  • The diagnosis of bridge serviceability is carried out by a combination of in-situ visual inspection, static and dynamic loading tests and analyses. Structural health monitoring (SHM) using information technology and sensors is increasingly being used for providing a better estimate of structural performance characteristics rather than above traditional methods. Because the mechanical behavior of bridges with various kinds of damage can not be made clear, it is very difficult to estimate both the damage mode and degree of damage of existing bridges. In this paper, the sensitivity of both static and dynamic behaviors of bridges are studied as a measure of damage assessment through experiments on model bridges induced with some specified artificial damages. And, a method of damage assessment of bridges based on those behaviors is discussed in detail. Finally, based on the results, a possible application for structural health monitoring systems for existing bridges is also discussed.

Proof Load Test and Integrity Assessment of Segmental PC Box-girder Bridges (Segmental PC 박스거더교의 검증재하시험 및 건전성평가)

  • 조효남;임종권;옥승범;지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.132-141
    • /
    • 1995
  • This study is intended to propose practical but systematic and rational approaches for proof load test and integrity assessment of segmental PC box-girder bridges. The proposed models cover the whole range of field tests and assessment of such as inspections, nondestructive tests, static and dynamic load tests, structural analysis, and integrity assessment for the evaluation of load carrying capacity, serviceability, and durability of PC box-girder bridges. They are applied to a newly constructed precast segmental PC box-girder bridge which is a part of the Seoul interior circuit elevated expressway.

  • PDF