• Title/Summary/Keyword: Service-intensity factor

Search Result 74, Processing Time 0.024 seconds

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

Positive Psychological Capital, Job Intensity, Customer Orientation and trust in O2O Distribution Market

  • PARK, Hye-Yoon
    • Journal of Distribution Science
    • /
    • v.19 no.6
    • /
    • pp.5-19
    • /
    • 2021
  • Purpose: O2O Service is a major internet-based distribution industry. The purpose of this study is to confirm the effects of positive psychological capital on job intensity, customer orientation, and the mediating effects of trust of O2O employee. Research design, data and methodology: This study aims to identify the effect of positive psychological capital on customer orientation and job intensity through empirical analysis. 475 questionnaires were used for the final analysis using random sampling methods from O2O employees working at leading distribution companies for hypothesis verification. The analysis methods used for hypothesis testing in this study were analyzed using the SPSS 21.0 statistical package. Results: Empirical analysis shows that it is an important factor in increasing job intensity and customer orientation, and that company trust has a significant influence through mediating effects among variables. Conclusions: In order to enhance job intensity and customer orientation for O2O distribution workers, it is necessary to change efforts with management efforts for positive psychological factors and trust. It is also believed that company trust should be considered as an important factor in the future leadership competency development system in that it can promote positive psychological capital, further strengthening job intensity and customer orientation.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

A Study on the Determinants of Hospital Profitability (병원 경영수지에 영향을 미치는 요인 분석)

  • Chun, Ki-Hong;Cho, Woo-Hyun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.3 s.43
    • /
    • pp.442-456
    • /
    • 1993
  • Financial stability is the foremost prerequisite for the continuous growth and development of hospitals. The present study aimed at developing a deterministic model using the factors which affect the hospitals profitability and at discovering which factor affected the hospital profitability. The study conducted questionnaire surveys on all general hospitals, with the exception of special hospitals, with over eighty hospital beds. Of the 274 subject hospitals, 136 of them, consituting 49.6% of the whole, were used in the study. The results are as follows. 1. In the deterministic model, outpatient revenue was affected more by the number of physician visits than by outpatient service intensity. Inpatient revenue was found to be affected more by the number of discharged patients than by inpatient service intensity. However, the increase rate of the service intensity not only contributed in stepping up the operating margin by $4{\sim}8%$ in outpatient and $3{\sim}6%$ in inpatient, but it was statistically significant. 2. Among the factors which determined the operating cost within the deterministic model, the number of patients had a greater impact on the operating cost than the resource consumption per patient. 3. The resource consumption per patient were proved to have the greatest effect on the profitability within the probabilistic model. The management cost per adjusted patient, in particular, was proven to have a statistically significant effect on the profitability in all hospitals.

  • PDF

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF

Empirical Analysis on the Estimation of Total Factor Productivity and its Determinants in the Korean Manufacturing and Service Industries (한국의 총요소생산성 추정과 생산성 결정요인에 관한 실증연구)

  • Zhu, Yan Hua
    • International Area Studies Review
    • /
    • v.22 no.4
    • /
    • pp.19-35
    • /
    • 2018
  • This paper is to estimate the total factor productivity(TFP) in the Korean manufacturing and service industries during the period 1975:1-2016:4 using the stochastic frontier analysis model. In order to analyze the determinants for the total factor productivity the paper estimates the industry-specific determinant elasticities of TFP using the autoregressive distributed model. The industry-specific determinants, which reflect the industrial structure and properties include markup, the ratio of capital to labor(KL), and the ratio of foreign intermediate goods (FIG) to industrial output. The average value for total factor productivity growth was estimated to be 0.0199 in manufacturing and 0.0063 in the service industry. The markup and KL elasticities of TFP were estimated to be 2.481 and 0.651 in manufacturing respectively and -1.403 and 0.042 in the service industry respectively. The empirical results suggest that the industrial markup and the ratio of capital to labor have had decisive effects on the changes in the total factor productivity in the Korean manufacturing and service industries during the period 1975:1-2016:4.

A Study on the Fatigue Crack Propagation Characteristics for SUP9 Steel at Low Temperature (SUP9강의 저온피로크랙 전파특성에 관한 연구)

  • 박경동;박상오
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.80-87
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) which was used in suspension of automobile for room temperature and low temperature service. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, ­3$0^{\circ}C$, ­5$0^{\circ}C$, ­7$0^{\circ}C$ and ­10$0^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

The Evaluation of Safety and Remaining Life on Fracture and Fatigue in Rail Steel (철도레일의 파괴 및 피로에 대한 안전도평가 및 잔류수명계산)

  • 박용걸
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.120-128
    • /
    • 1995
  • The fatigue failure of rail is a principal source of derailment accidents. The reduction of fatigue failures can be achieved by Intensive track maintenance and periodic safety assessments for the railway. For the safety assessments, it is required to have more accurate knowledge for fatigue behavior such as the crack initiation, propagation, crack growth rate and the remaining service life in rail. In this paper, the mean stress effects for the fatigue behavior of rail steel are studied. For this study, the fatigue test is conducted and some equations for fatigue evaluation are applied and compared. From the results, we can see that the fatigue crack growth rate is the more increased as the men stress Is the more increased, the mean stress effect is represented well by the combination of stress intensity factor range and maximum stress intensity factor and Crooker and Range's equation represented by ${\Delta}K, K_{max}$ is the best fit for fatigue evaluation and safety assessment of rail.

  • PDF