• 제목/요약/키워드: Service recommendation

Search Result 792, Processing Time 0.028 seconds

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

Influence A Study on the Effects of Personalized Recommendation Service of OTT Service on the Relationship Strength and Customer Loyalty in Accordance with Type of Contents (콘텐츠 유형에 따라 OTT 서비스의 개인화추천서비스가 관계강화 및 고객충성도에 미치는 영향)

  • Kim, Minjoo;Kim, Minkyun
    • Journal of Service Research and Studies
    • /
    • v.8 no.4
    • /
    • pp.31-51
    • /
    • 2018
  • The objective of this study is to suggest the measures for providing the personalized recommendation service, by analyzing the effects of personalized recommendation service of OTT service on the relationship strength and customer loyalty, and also to verify the differences in meanings of personalized recommendation service in accordance with the type of contents. In the results of this study, the personalized recommendation service has significant effects on the customer loyalty with the mediation of relationship strength, and in accordance with the type of contents mainly used by customers, there are differences in the effects of personalized recommendation service on the customers. Personalized recommendation service could be used as a tool for strengthening the relationship by inducing the commitment, which could improve the customer loyalty. When the contents have more active communications with customers, personalized recommendation service could largely contribute to the improvement of loyalty.

On-line Recommendation Service Algorithm using Human Sensibility Ergonomics (감성공학을 이용한 온라인 추천 서비스 알고리즘)

  • 임치환
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. This paper deals with an intelligent agent approach to incorporate customer's sensibility into an one-to-one recommendation service in on-line shopping mall. In this paper the focus of interest is on-line recommendation service algorithm for development of Human Sensibility based web agent system. The recommendation agent system composed of seven services including specialized algorithm. The on-line recommendation service algorithm use human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system's behavior requires the parallel execution of several tasks during the interaction (e.g., identifying the customer's emotional preference and dynamically generating the pages of the store catalog). Most of the present shopping malls go through the catalog of goods, but the future shopping malls will have the form of intelligent shopping malls by applying the on-line recommendation service algorithm.

A Study on the Antecedents of Research Facility Public Usage Enhancement: Focusing on Service Quality, User Satisfaction and Reuse/Recommendation Intention in the Case of RFID/USN Support Center (공공 연구시설 활용 증진의 선행요인에 대한 연구: RFID/USN 종합지원센터의 서비스품질, 이용자만족, 재이용 및 추천의도를 중심으로)

  • Yoo, Seuck-Cheun;Jung, Uk;Park, Chan-Kyoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.37-51
    • /
    • 2010
  • Understanding the antecedents of high public usage of national R&D facilities is a critical issue for both academics and facility managers. Previous researchrelated to general service management has identified service quality and user satisfaction as important antecedents of reuse and recommendation intention. The current paper reports findings from a survey which looked into the impact of service quality dimensions and user satisfaction on reuse and recommendation intention in the field of R&D facility public usage. Findings indicate that service quality appears to be linked to user satisfaction, and user satisfaction to be linked to reuse and recommendation intention. Findings also indicate that user satisfaction played as a mediator on the relationship between service quality and reuse/recommendation intentions in R&D facility public usage domain.

The Effect of Consumers' Choice Overload and Avoidance of Similarity on Innovativeness and Use Compatibility in Online Recommendation Service (소비자의 선택 과부하와 유사성 회피 성향이 온라인 추천 서비스의 혁신성과 사용 적합성 지각에 미치는 영향)

  • Yoon, Namhee;Lee, Ha Kyung;Jang, Seyoon
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.141-150
    • /
    • 2019
  • Online recommendation services help people search for an appropriate product among a huge assortment in stores that also minimize consumers' choice overload. People with a need for uniqueness are likely to prefer this online recommendation service based on individual needs and tastes. This study verifies the effect of consumers' choice overload and similarity avoidance in consumers' evaluation towards an online recommendation service with a focus on innovativeness and use comparability. Two-hundred consumers participated in this study and data were collected through an online survey firm. A mock retailer's webpage was created and showed six types of sneakers, which was presented as a result of product recommendation based on consumers' personal information. Data was analyzed using confirmatory factor analysis (CFA), analysis of variance (ANOVA), and regression analysis. The results show that people with a high similarity avoidance perceive an online recommendation service as an innovative and compatible service. They also perceive a high level of use compatibility for an online recommendation service, especially when it is difficult to choose a product under choice overload. Innovativeness and use compatibility of an online recommendation service increase behavioral intention. The results of this study can contribute to strategies to start online recommendation services from online retailers' websites that identify circumstances in which consumers can adopt innovative services in a positive manner.

A Study on the Hotel Buffet Restaurant's Service Quality, Emotional Reaction, Recommendation Intention, and Defection Intention of Customer (호텔 뷔페 레스토랑의 서비스 품질과 고객의 감정반응, 추천의도 및 이탈의도에 관한 연구)

  • Lee, Jae-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2011
  • This study investigated the hotel buffet restaurant's service quality, emotional reaction of customer, recommendation intention, and defection intention. The survey was conducted from January 3 to February 7 in 2011, and 400 respondents were used in the data analysis. As a results of this study, the hotel buffet restaurant's service quality was classified by the interaction, outcome, and physical environment quality. The emotional reaction of hotel buffet restaurant's customer was classified by the positive and negative emotion. The all factors of hotel buffet restaurant's service quality had a positive impact on positive emotion, while it had a negative impact on negative emotion. The positive emotion reaction of hotel buffet restaurant's customer had a positive impact on the recommendation intention, while the negative emotion had a negative impact on the recommendation intention. And the negative emotion had a positive impact on the defection intention in hotel buffet restaurants. In addition, there were partially differences in the service quality and emotional reaction by general characteristics. There were significant differences in the recommendation intention by marriage status and monthly income. Therefore, the hotel buffet restaurants have to design a strategy of service for increasing customer's positive emotion and recommendation intention.

Hybrid Recommendation Based Brokerage Agent Service System under the Compound Logistics (공동물류 환경의 혼합추천시스템 기반 차주-화주 중개서비스 구현)

  • Jang, Sangyoung;Choi, Myoungjin;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • Compound logistics is a service aimed to enhance logistics efficiency by supporting that shippers and consigners jointly use logistics facilities. Many of these services have taken place both domestically and internationally, but the joint logistics services for e-commerce have not been spread yet, since the number of the parcels that the consigners transact business is usually small. As one of meaningful ways to improve utilization of compound logistics, we propose a brokerage service for shipper and consigners based on the hybrid recommendation system using very well-known classification and clustering methods. The existing recommendation system has drawn a relatively low satisfaction as it brought about one-to-one matches between consignors and logistics vendors in that such matching constrains choice range of the users to one-to-one matching each other. However, the implemented hybrid recommendation system based brokerage agent service system can provide multiple choice options to mutual users with descending ranks, which is a result of the recommendation considering transaction preferences of the users. In addition, we applied feature selection methods in order to avoid inducing a meaningless large size recommendation model and reduce a simple model. Finally, we implemented the hybrid recommendation system based brokerage agent service system that shippers and consigners can join, which is the system having capability previously described functions such as feature selection and recommendation. As a result, it turns out that the proposed hybrid recommendation based brokerage service system showed the enhanced efficiency with respect to logistics management, compared to the existing one by reporting two round simulation results.

The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation (지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향)

  • Jeong, Seung-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.164-175
    • /
    • 2022
  • The OTT (Over The Top) platform promotes itself as a distinctive competitive advantage in that it allows users to stay on the platform longer and visit more often through a Personalized Recommendation Service. In this study, the characteristics of the Personalized Recommendation Service are divided into three categories: recommendation accuracy, recommendation diversity, and recommendation novelty. Then proposed a research model which affects the usefulness of users to recognize recommendation services by each characteristics and leads to satisfaction of expectations. The result of conducting an online survey of 300 people in their 20s and 30s who subscribe Netflix shows that the perceived usefulness increased when the accuracy, variety, and novelty of Netflix's Recommendation Service were high. It was also confirmed that high perceived usefulness leads to satisfaction of expectations before and after Netflix use. The derived research results can confirm the importance of evaluating the personalized recommendation service in terms of user experience and provide implications for ways to improve the quality of recommendation services.

Design and Implementation of Dynamic Recommendation Service in Big Data Environment

  • Kim, Ryong;Park, Kyung-Hye
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2019
  • Recommendation Systems are information technologies that E-commerce merchants have adopted so that online shoppers can receive suggestions on items that might be interesting or complementing to their purchased items. These systems stipulate valuable assistance to the user's purchasing decisions, and provide quality of push service. Traditionally, Recommendation Systems have been designed using a centralized system, but information service is growing vast with a rapid and strong scalability. The next generation of information technology such as Cloud Computing and Big Data Environment has handled massive data and is able to support enormous processing power. Nevertheless, analytic technologies are lacking the different capabilities when processing big data. Accordingly, we are trying to design a conceptual service model with a proposed new algorithm and user adaptation on dynamic recommendation service for big data environment.

Design and Implementation of Agent-Recruitment Service System based on Collaborative Deep Learning for the Intelligent Head Hunting Service (지능형 헤드헌팅 서비스를 위한 협업 딥 러닝 기반의 중개 채용 서비스 시스템 설계 및 구현)

  • Lee, Hyun-ho;Lee, Won-jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.343-350
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution in the digital revolution is taking place, various attempts have been made to provide various contents in a digital environment. In this paper, agent-recruitment service system based on collaborative deep learning is proposed for the intelligent head hunting service. The service system is improved from previous research [7] using collaborative deep learning for more reliable recommendation results. The Collaborative deep learning is a hybrid recommendation algorithm using "Recurrent Neural Network(RNN)" specialized for exponential calculation, "collaborative filtering" which is traditional recommendation filtering methods, and "KNN-Clustering" for similar user analysis. The proposed service system can expect more reliable recommendation results than previous research and showed high satisfaction in user survey for verification.