• Title/Summary/Keyword: Service Inference

Search Result 180, Processing Time 0.023 seconds

Development of Emotion Inference Application with Location Information and User's Heartbeat Rate (심박 정보 기반 위치 정보 융합형 감정 추론 어플리케이션 개발)

  • Cha, Kyung-Ae;Choi, Hyun-Su;Hong, Won-Kee;Park, Se Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.83-88
    • /
    • 2017
  • The personal activity information is expanding as a way to utilize wearable devices that are emerging as next generation smart devices. This paper develops an application for collecting heartbeat rate and location information of a user using SmartWatch, which is a smartphone and wearable device, and analyzing it through machine learning to infer user's emotion information. By using smart phone and smart watch, developed application can collect biometric data and location information by simply executing application and doing everyday life. In addition, adding the location information to the hearbit rate data, it proves higher utilization than existing ones.

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

Automatic Determination of Usenet News Groups from User Profile (사용자 프로파일에 기초한 유즈넷 뉴스그룹 자동 결정 방법)

  • Kim, Jong-Wan;Cho, Kyu-Cheol;Kim, Hee-Jae;Kim, Byeong-Man
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • It is important to retrieve exact information coinciding with user's need from lots of Usenet news and filter desired information quickly. Differently from email system, we must previously register our interesting news group if we want to get the news information. However, it is not easy for a novice to decide which news group is relevant to his or her interests. In this work, we present a service classifying user preferred news groups among various news groups by the use of Kohonen network. We first extract candidate terms from example documents and then choose a number of representative keywords to be used in Kohonen network from them through fuzzy inference. From the observation of training patterns, we could find the sparsity problem that lots of keywords in training patterns are empty. Thus, a new method to train neural network through reduction of unnecessary dimensions by the statistical coefficient of determination is proposed in this paper. Experimental results show that the proposed method is superior to the method using every dimension in terms of cluster overlap defined by using within cluster distance and between cluster distance.

Model Type Inference Attack Using Output of Black-Box AI Model (블랙 박스 모델의 출력값을 이용한 AI 모델 종류 추론 공격)

  • An, Yoonsoo;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.817-826
    • /
    • 2022
  • AI technology is being successfully introduced in many fields, and models deployed as a service are deployed with black box environment that does not expose the model's information to protect intellectual property rights and data. In a black box environment, attackers try to steal data or parameters used during training by using model output. This paper proposes a method of inferring the type of model to directly find out the composition of layer of the target model, based on the fact that there is no attack to infer the information about the type of model from the deep learning model. With ResNet, VGGNet, AlexNet, and simple convolutional neural network models trained with MNIST datasets, we show that the types of models can be inferred using the output values in the gray box and black box environments of the each model. In addition, we inferred the type of model with approximately 83% accuracy in the black box environment if we train the big and small relationship feature that proposed in this paper together, the results show that the model type can be infrerred even in situations where only partial information is given to attackers, not raw probability vectors.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Personalized Service Based on Context Awareness through User Emotional Perception in Mobile Environment (모바일 환경에서의 상황인식 기반 사용자 감성인지를 통한 개인화 서비스)

  • Kwon, Il-Kyoung;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.287-292
    • /
    • 2012
  • In this paper, user personalized services through the emotion perception required to support location-based sensing data preprocessing techniques and emotion data preprocessing techniques is studied for user's emotion data building and preprocessing in V-A emotion model. For this purpose the granular context tree and string matching based emotion pattern matching techniques are used. In addition, context-aware and personalized recommendation services technique using probabilistic reasoning is studied for personalized services based on context awareness.

Enhancing Security Gaps in Smart Grid Communication

  • Lee, Sang-Hyun;Jeong, Heon;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.7-10
    • /
    • 2014
  • In order to develop smart grid communications infrastructure, a high level of interconnectivity and reliability among its nodes is required. Sensors, advanced metering devices, electrical appliances, and monitoring devices, just to mention a few, will be highly interconnected allowing for the seamless flow of data. Reliability and security in this flow of data between nodes is crucial due to the low latency and cyber-attacks resilience requirements of the Smart Grid. In particular, Artificial Intelligence techniques such as Fuzzy Logic, Bayesian Inference, Neural Networks, and other methods can be employed to enhance the security gaps in conventional IDSs. A distributed FPGA-based network with adaptive and cooperative capabilities can be used to study several security and communication aspects of the smart grid infrastructure both from the attackers and defensive point of view. In this paper, the vital issue of security in the smart grid is discussed, along with a possible approach to achieve this by employing FPGA based Radial Basis Function (RBF) network intrusion.

Trends in AI Processor Technology (인공지능프로세서 기술 동향)

  • Lee, M.Y.;Chung, J.;Lee, J.H.;Han, J.H.;Kwon, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.66-75
    • /
    • 2020
  • As the increasing expectations of a practical AI (Artificial Intelligence) service makes AI algorithms more complicated, an efficient processor to process AI algorithms is required. To meet this requirement, processors optimized for parallel processing, such as GPUs (Graphics Processing Units), have been widely employed. However, the GPU has a generalized structure for various applications, so it is not optimized for the AI algorithm. Therefore, research on the development of AI processors optimized for AI algorithm processing has been actively conducted. This paper briefly introduces an AI processor especially for inference acceleration, developed by the Electronics and Telecommunications Research Institute, South Korea., and other global vendors for mobile and server platforms. However, the GPU has a generalized structure for various applications, so it is not optimized for the AI algorithm. Therefore, research on the development of AI processors optimized for AI algorithm processing has been actively conducted.

Application of Standard Terminologies for the Development of a Customized Healthcare Service based on a PHR Platform

  • Jung, Hyun Jung;Park, Hyun Sang;Kim, Hyun Young;Kim, Hwa Sun
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.303-308
    • /
    • 2019
  • The personal health record platform can store and manage medical records, health-monitoring data such as blood pressure and blood sugar, and life logs generated from various wearable devices. It provides services such as international standard-based medical document management, data pattern analysis and an intelligent inference engine, and disease prediction and domain contents. This study aims to construct a foundation for the transmission of international standard-based medical documents by mapping the diagnosis items of a general health examination, special health examination, life logs, health data, and life habits with the international standard terminology systems. The results of mapping with international standard terminology systems show a high mapping rate of 95.6%, with 78.8% for LOINC, 10.3% for SNOMED, and 6.5% when mapped with both LOINC and SNOMED.

Emotion Modeling for Emotion-based Personalization Service

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.13 no.3
    • /
    • pp.97-104
    • /
    • 2020
  • This study suggests the emotion space modeling and emotion inference methods suitable for personalized services based on psychological and emotional models. For personalized emotion space modeling taking into account the subjective disposition based on the empirical assessment of the personal emotions felt by the personalization process of emotion space was used as a decision support tool, the Analytic Hierarchy Process. This confirmed that the special learning to perform personalized emotion space modeling without considering the subjective tendencies. In particular to check the possible reasoning based on fuzzy emotion space modeling and sensitivity for the quantification and vague human emotion to it based on the inherent human sensitivity.