• Title/Summary/Keyword: Serum miR-210

Search Result 3, Processing Time 0.017 seconds

Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)

  • Abdellaoui, Najib;Kwak, Jun Soung;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.35-43
    • /
    • 2020
  • Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.

Preliminary Study for Elevated Serum CXCL10 and CXCL11 in Active Pulmonary Tuberculosis Compared with the Other Pulmonary Diseases (타 폐질환과 비교를 통한 활동성 결핵에서 혈중 CXCL10과 CXCL11 증가의 의의)

  • Park, Mi Young;Kim, Shine Young;Hwang, Sang-Hyun;Kim, Ji-Eun;Lee, Min Ki;Lee, Chang-Hun;Lee, Eun-Yup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.205-210
    • /
    • 2009
  • Background: CXCL10 and CXCL11, which are family of CXCR3 ligands, are expressed by lymphocytes and even by bronchial epithelial cells if the cellular immunity is activated. This study evaluated the potential utility of CXCL10 and CXCL11 in the serum for active pulmonary tuberculosis in comparison with lung cancer, which activates the cellular immunity, and benign lung diseases. Methods: Patients who newly visited Pusan National University Hospital from January 2007 to December 2007 and were suspected of having lung cancer or tuberculosis were enrolled prospectively. The patients were classified pathologically and clinically into three groups, 47 with lung cancer, 18 with active pulmonary tuberculosis and 38 control patients with benign pulmonary disease. ELISA was used to determine the levels of CXCL10 and CXCL11 were determined in the serum. Results: The level of CXCL10 and CXCL11 were significantly higher in the active pulmonary tuberculosis group than in the lung cancer and benign lung disease groups (p<0.001, Kruskal-Wallis). The level of CXCL11 was significantly higher in the lung cancer group than in the benign pulmonary disease group, but there was no significant difference in level of CXCL10 between the three groups (p<0.001, p=0.655, respectively, Mann-Whitney U). The level of CXCL10 in patients with stage III+IV lung cancer was significantly higher than those with stage I+II, but there was no significant difference in the level of CXCL11 between the groups (p<0.001, p=0.07, respectively, Mann-Whitney U). There was no significant difference in the level of CXCL10 and CXCL11 between those with the presence and absence of lung cancer metastasis. There was a significant correlation between the level of CXCL10 and CXCL11 (r=0.223, p<0.001). Conclusion: CXCL10 and CXCL11 may be a potential useful markers for active pulmonary tuberculosis if used alongside other diagnostic methods.