• 제목/요약/키워드: Serratia acetolactate synthase

검색결과 10건 처리시간 0.023초

Serratia marcescens ATCC 25419가 생산하는 Acetolactate Synthase Isozyme의 특성 (The Properties of Acetolactate Synthase Isozyme Produced by Serratia marcescens ATCC 254 19)

  • 김종탁;김승수
    • 한국미생물·생명공학회지
    • /
    • 제20권1호
    • /
    • pp.25-33
    • /
    • 1992
  • Serratia marcescens ATCC 25419를 질소원이 풍부한 BHI 배지에서 황산 암모늄 분별 침전을 시킨 후 DAEA-Sephacel chromatography, Phenyl-Sepharose hydrophobic chromatography, Sephacryl S-400 gel filtration, native gel elution을 거쳐 ALS isozyme Rf 0.83을 분리하였다. 분리한 ALS isozyme Rf 0.83의 native 형태는 gel filtration을 이용하여 분자량을 측정한 결과, 531,400이었고, SDS-PAGE를 수행한 결과 55,000의 large subunit와 38,900의 small subunit로 구성된 multimer임을 알 수 있었다.

  • PDF

Effect of Pyrimidylsalicylate on the Valine Sensitive Acetolactate Synthase Purified from Serroatia marcescens

  • Yang, Jeong-Hee;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.13-17
    • /
    • 1997
  • The inhibitory effect of herbicides such as sulfonylurea derivatives, imidazolinones and pyrimidylsalicylate has been examined on the purified valine sensitive acetolactate synthase (ALS) from Serratia marcescens. The concentration of sulfometuron methyl which inhibits 50% of the ALS activity was 2.5 mM. The required concentrations of triasulfuron, primisulfuron methyl and imazaquin for the 50% inhibition of the ALS activity were 1 mM. The resistance of Serratia ALS to sulfometuron methyl, imazapyr and imazaquin is similar to that of E. coli ALS 1. However, pyrimidylsalicylate showed a potent inhibitory effect on the Serratia ALS almost 13 times more potent than on E. coli ALS II, which is known as herbicide-sensitive isozyme. The inhibitory mode was competitive against pyruvate. 150 value was determined to be $17{\mu}M$ in an assay mixture containing 20 mM pyruvate, and the $K_1$, value was calculated to be $0.4{\mu}m$ from the modified double reciprocal plot of 1/V versus $1/S^2$.

  • PDF

Purification and Characterization of the Catabolic α-Acetolactate Synthase from Serratia marcescens

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제31권1호
    • /
    • pp.37-43
    • /
    • 1998
  • The catabolic ${\alpha}$-acetolactate synthase was purified to homogeneity from Serratia marcescens ATCC 25419 using ammonium sulfate fractionation, DEAE-Sepharose, Phenyl-Sepharose, and Hydroxylapatite column chromatography. The native molecular weight of the enzyme was approximately 150 kDa and composed of two identical subunits with molecular weights of 64 kDa each. The N-terminal amino acid sequence of the enzyme was determined to be Ala-Gln-Glu-Lys-Thr-Gly-Asn-Asp-Trp-Gln-His-Gly-Ala-Asp-Leu-Val-Val-Lys-Asn-Leu. It was not inhibited by the branched chain amino acids and sulfometuron methyl herbicide. The optimum pH of the enzyme was around pH 5.5 and the pI value was 6.1. The catabolic ${\alpha}$-acetolactate synthase showed weak immunological relationships with recombinant tobacco ALS, barley ALS, and the valine-sensitive ALS isozyme from Serratia marcescens.

  • PDF

Branched Chain 아미노산과 대사산물들이 Serratia marcescens ATCC 25419 Acetolactate Synthase의 생합성에 미치는 영향 (The Effects of Branched Chain Amino Acids and Small Metabolites on the Biosynthesis of Acetolactate Synthase in Serratia rnarcescens ATCC 25419)

  • 최병범;김승수
    • 한국미생물·생명공학회지
    • /
    • 제20권2호
    • /
    • pp.115-121
    • /
    • 1992
  • 최소 배지에 여러가지 아미노산들을 첨가하여 배양한 Serratia marcescens ATCC 25419 세포 추출물에서 acetolactate syhthase(ALS)의 비활성도를 0.5mM에서 40 증가시킨 반면 8mM에서 60, 20mM에서 90 감소시켰다. Valine은 효소의 비활성도를 2-4 mM에서 20-40 정도 증가시켰고 20mM의 높은 농도에서 10 정도 감소시켰다.

  • PDF

Chemical Modification of Serratia marcescens Catabolic ${\alpha}-Acetolactate$ Synthase

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.139-143
    • /
    • 1998
  • The catabolic ${\alpha}-acetolactate$ synthase purified from Serratia marcescens ATCC 25419 was rapidly inactivated by the tryptophane-specific reagent, N -bromosuccinimide, and the arginine-specific reagent, phenylglyoxal. The enzyme was inactivated slowly by the cysteine-specific reagent N-ethylmaleimide. The second-order rate constants for the inactivation by N-bromosuccinimide, phenylglyoxal. and N -ethylmaleimide were $114,749M^{-1}min^{-1}$, $304.3M^{-1}min^{-1}$, and $5.1M^{-1}min^{-1}$, respectively. The reaction order with respect to N-bromosuccinimide, phenylglyoxal, and N-ethylmaleimide were 1.5,0.71, and 0.86, respectively. The inactivation of the catabolic aacetolactate synthase by these modifying reagents was protected by pyruvate. These results suggest that essential tryptophane, arginine, and cysteine residues are located at or near the active site of the catabolic ${\alpha}-acetolactate$ synthase.

  • PDF

Regulation of the Expression of the Catabolic Acetolactate Synthase by Branched Chain Amino Acids in Serratia marcescens

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.210-213
    • /
    • 1999
  • In Serratia marcescens, acetolactate produced by the catabolic acetolactate synthase (ALS) is converted into acetoin, its physiological role of which is to maintain intracellular pH homeostasis. In this study, the expression mode of catabolic ALS by aeration and branched-chain amino acids was examined by the ELISA method. The amount of catabolic ALS decreased approximately 93% under aerobic conditions. We also showed that the expression of catabolic ALS decreased approximately 34 % and 65 % in the presence of 2.5 mM and 10 mM leucine, respectively. The repression of catabolic ALS by leucine has not been reported previously. In contrast to leucine, catabolic ALS levels increased approximately 13% and 38% by treatment with 2.5 mM and 10 mM isoleucine, respectively, while valine alone did not have any significant effect on the synthesis of catabolic ALS. The amount of catabolic ALS was also reduced to approximately 32% and 45% in the presence of 10 mM Leu+Ile and Leu+Ile+Val, respectively. The regulatory mode of the Serratia catabolic ALS suggests that catabolic ALS may also have a role in supplying acetolactate as an intermediate of valine and leucine biosynthesis in addition to the maintenance of internal pH.

  • PDF

Chemical Modification of Serratia marcescens Acetolactate Synthase with Cys, Trp, and Arg Modifying Reagents

  • Choi, Ho-Il;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제28권1호
    • /
    • pp.40-45
    • /
    • 1995
  • Acetolactate synthase purified from Serratia marcescens ATCC 25419 was rapidly inactivated by the thiol specific reagent p-chloromercuribenzoate (PCMB), the tryptophan specific reagent N-bromosuccinimide (NBS), and the arginine modifying reagent phenylglyoxal (PGO). Inactivation by PCMB was prevented by both ${\alpha}$-ketobutyrate and pyruvate, and the second order rate constant for the inactivation was $2480\;M^{-1}{\cdot}min^{-1}$. The reaction order with respect to PCMB was 0.94. The inactivation of the enzyme by NBS was also substantially reduced by both ${\alpha}$-ketobutyrate and pyruvate. The second order rate constant for inactivation by NBS was $15,000\;M^{-1}{\cdot}min^{-1}$, and the reaction order was 2.0. On the other hand, inactivation by PGO was partially prevented by ${\alpha}$-ketobutyrate, but not by pyruvate. The second order rate constant for the inactivation was $1480\;M^{-1}{\cdot}min^{-1}$ and the order of reaction with respect to PGO was 0.75. These results suggest that essential cysteine, tryptophan and arginine are located at or near the substrate binding site.

  • PDF

Purification and Characterization of the Anabolic Acetolactate Synthase III from Serratia marcescens ATCC 25419

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.244-249
    • /
    • 2001
  • The anabolic acetolactate synthase III was purified to homogeneity from Serratia marcescens using DEAE-Sepharose, Phenyl-Sepharose, and hydroxylapatite column chromatography The native molecular weight of the enzyme was approximately 165 kDa. The enzyme is composed of two large and two small subunits with molecular weights of 64 and 15 kDa, respectively. The N-terminal sequence of the large and small subunit of the enzyme was Ser-Ala-Thr-Pro-Gln-Pro-Ser-Thr-Arg-Phe-Thr-Cys-Ala-Gln-Leu-Ile-Ala-His-Leu and Met-Leu-Gln-Pro-Gln-Asp-Lys-Pro-Gln-Val-Ile-Leu-Glu-Leu-Ala-Val-Arg-Asn-His-Pro-Gly-Val-Met-Ser-His-Val, respectively. The optimum pH and pI value were 7.5 and 5.5, respectively The $IC_{50}$ values were $20\;{\mu}M$ and $14\;{\mu}M$ for valine and herbicide SU7, respectively. The substrate specificity ratio, R value, was determined to be approximately 40, which suggests that this enzyme prefers the formation of $\alpha$-aceto-$\alpha$-hydroxybutyrate leading to the synthesis of isoleucine.

  • PDF

Serratia marcescens Biodegradative, Biosynthetic Threonine Dehydratase와 Acetolactate Synthase의 생합성에 대한 조절

  • 최병범;방선권
    • 한국식품영양학회:학술대회논문집
    • /
    • 한국식품영양학회 2001년도 동계 학술심포지움
    • /
    • pp.121-121
    • /
    • 2001
  • 최소 배지에 여러 아미노산과 대사 산물을 첨가하여 배양시킨 Serratia marcescens ATCC 25419 세포추출물에서여 biodegradative threonine dehydratase (BDTD), biosynthetic threonine dehydratase (BSTD)와 acetolactate syntase (ALS)의 비활성도를 조사하였다. S. marcescens BDTD와 ALS는 낮은 농도 (0.5-2 mM)의 cAMP에 의해 촉진적 조절을 받으며, 비교적 낮은 농도의 isoleucine (1-4 mM)에 의해서는 S. marcescens BSTD의 생합성이 증가되고 높은 농도의 isoleucine (10-30 mM)에서는 감소되고 비교적 낮은 농도의 valine (2-4 mM)에 의해서 S. marcescens ALS의 생합성이 증가되는 것으로 보아 S. marcescens ATCC 25419에서 branched chain 아미노산 생합성 과정의 조절 양상은 Escherichia coli K-12와는 달리, isoleucine의 생합성 과정은 BSTD에 의해 조절되고, valine의 생합성 과정은 ALS에 의해 조절되는 것으로 사료된다.

  • PDF

N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1

  • Jin, Wensong;Lin, Hui;Gao, Huifang;Guo, Zewang;Li, Jiahuan;Xu, Quanming;Sun, Shujing;Hu, Kaihui;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.596-606
    • /
    • 2019
  • N-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ${\Delta}swrI$ with or without supplementing exogenous N-hexanoyl-L-homoserine lactone ($C_6-HSL$) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing $C_6-HSL$. Furthermore, fermentation product analysis indicated that ${\Delta}swrI$ could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ${\Delta}swrI$ appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, ${\alpha}$-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.