• 제목/요약/키워드: Serpentine flow

검색결과 54건 처리시간 0.028초

사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측 (Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels)

  • 전세계;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구 (A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels)

  • 조중원;안은진;이승보;윤영기;이원용
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

혼합 다채널 사형 유로의 혼합영역이 PEMFC 성능에 미치는 영향 (The Effect of Mixing Region in Mixed Multiple Serpentine Flow-field to PEMFC Performance)

  • 이지홍;이명용;김헌주;이상석;이도형
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.265-273
    • /
    • 2009
  • Proton Exchange Membrane Fuel Cell (PEMFC) has low operating temperature and high efficiency. And PEMFC consists of many components as bipolar plate, gas diffusion layer, membrane etc.. Flow-field in bipolar plate roles path for transporting reactants to membrane. Therefore a design of flow-field has an effect on PEMFC's performance. In this study, Computational Fluid Dynamics (CFD) simulations were performed for comparing mixed multiple serpentine (MMS) flow-field and multiple serpentine (MS) flow-field. And we studied an effect according to change mixing region design in MMS flow-field. Finally the applicability of results is verified by performing CFD simulation about fixed MMS flow-field which is combined good designs.

고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구 (Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells)

  • 안성하;오경민;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

전항력을 이용한 회전 블레이드 냉각성능 향상 방안 연구 (Advanced Internal Cooling Passage of Turbine Blade using Coriolis Force)

  • 박준수
    • 융복합기술연구소 논문집
    • /
    • 제6권1호
    • /
    • pp.37-41
    • /
    • 2016
  • The serpentine internal passage is located in turbine blade and it shows the variety heat transfer distribution. Especially, the Coriolis force, which is induced by blade rotation, makes different heat transfer distribution of the leading and trailing surfaces of serpentine internal passage. The different heat transfer is one of the reasons why the serpentine cooling passage shows low cooling performance in the rotating condition. So, this study tried to design the advanced the serpentine passage to consideration of the Coriolis force. The design concept of advanced serpentine cooling is maximizing cooling performance using the Coriolis force. So, the flow turns from leading surface to trailing surface in advanced serpentine passage to match the direction of Coriolis force and rotating force. We performed numerical analysis using CFX and compared the existing and advanced serpentine internal passage. This design change is induced the high heat transfer distribution of whole advanced serpentine internal passage surfaces.

가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향 (The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell)

  • 조중원;안은진;이승보;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

직접 메탄올 연료전지 유로 설계를 위한 3차원 모델 개발 (Development of 3D DMFC Model for Flow Field Design)

  • 김홍성;;임종구;문일
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.93-102
    • /
    • 2007
  • 본 연구에서는 직접 메탄올 연료전지의 전기 화학 반응에 의해 발생하는 이산화탄소와 물의 조절을 위해 기체 발생과 흐름 현상을 관찰할 수 있는 3차원 모델을 개발하였다. 산화극 쪽에 발생한 기체의 조절은 직접 메탄올 연료전지를 설계하는데 중요한 문제이며, 연료 전지의 성능에 커다란 영향을 준다. 유로는 기체의 조절과 아주 밀접한 관계가 있으나 다양한 유로를 설계하고 실험하여 최적의 디자인을 찾는 것은 어렵고 바이폴라 플레이트의 높은 가격 때문에 많은 비용이 필요하다. 이 문제를 해결하기 위해 전산 유체역학 모델링 기법을 도입하였다. 전산 유체역학을 기반으로 하여 개발된 two-fluid 모델을 이용하여 유체의 흐름 패턴을 시각화 하여 분석함으로써 실험의 횟수를 줄일 수 있었고, 대표적인 4가지 연료전지 유로인 serpentine, zigzag, parallel, semi-serpentine 형태에 개발된 모델을 적용하여 속도, 압력, 메탄올 몰분율, 기체 몰분율 등을 계산하였다. 계산 결과를 이용하여 각 형태의 특성과 장단점을 파악하였고, 이를 바탕으로 가스를 효율적으로 제거할 수 있는 최적 유로를 설계 하였다.

연료전지 분리판의 형상설계를 위한 유동해석 (Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell)

  • 박정선;정혜미
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계 (Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells)

  • 최갑승;배병철;박기원;김형만
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.74-82
    • /
    • 2012
  • 고분자전해질 연료전지의 성능은 매우 복잡한 물리 현상들에 의해 변화하게 된다. 반응면적이 25 $cm^2$인 5-pass, 4-turn 사행성 유동유로의 립 부분에 보조유동유로를 가지는 형상에 대하여 물관리 측면에서의 연료전지 성능을 수치해석을 통해 비교하였다. 보조유동유로를 추가함에 따라 촉매층 공급 대류의 유동 방향이 변경되어 유로 내부의 물 배출 특성을 향상시키는 결과를 나타내었다. 또한 입구에서의 공급기체를 보조유동유로로 분산시킴에 따라 입구에서의 전류 밀도는 낮아지며 보조유동유로로 이동하는 공급기체들은 주 유동유로의 내에서의 체류시간보다 길어져서 전체적인 전류밀도 분포가 균일해지는 것을 확인하였다.

병렬 사형유로를 채택한 냉각판을 통한 고분자 전해질 연료전지의 균일 냉각에 대한 전산유체역학 해석 연구 (Computational Fluid Dynamics Study on Uniform Cooling of Polymer Electrolyte Membrane Fuel Cells by Parallel Multi-pass Serpentine Flow Fields)

  • 류승호;백승만;남진현;김찬중
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.885-891
    • /
    • 2010
  • 고분자 전해질 연료전지(PEMFC)의 열관리는 성능 향상과 내구성 측면에서 중요한 문제이다. 일반적으로 냉각수 순환 유로를 가진 냉각판이 여러 개의 단전지 사이에 삽입되어 PEMFC 내부에서 발생하는 반응열을 외부로 배출한다. 본 연구에서는 개선된 병렬 사형유로(MPSFF)를 향상된 냉각성능을 가진 냉각판 유로형상으로 제안하고, 이를 전산유체역학(CFD) 해석을 통하여 평가하였다. 비교를 위하여 냉각수 유로로 일반적으로 사용되는 사형유로 및 병렬형유로의 냉각성능에 대한 계산도 수행하였다. CFD 결과는 개선된 병렬 사형유로가 냉각판 표면에서의 온도의 비균일도를 상당히 감소시키고, 따라서 PEMFC의 내구성과 성능을 향상시킬 수 있음을 보여주었다.