• Title/Summary/Keyword: Serpent Code

Search Result 23, Processing Time 0.022 seconds

CEFR control rod drop transient simulation using RAST-F code system

  • Tuan Quoc Tran;Xingkai Huo;Emil Fridman;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4491-4503
    • /
    • 2023
  • This study aimed to verify and validate the transient simulation capability of the hybrid code system RAST-F for fast reactor analysis. For this purpose, control rod (CR) drop experiments involving eight separate CRs and six CR groups in the China Experimental Fast Reactor (CEFR) start-up tests were utilized to simulate the CR drop transient. The RAST-F numerical solution, including the neutron population, time-dependent reactivity, and CR worth, was compared against the measurement values obtained from two out-of-core detectors. Moreover, the time-dependent reactivity and CR worth from RAST-F were verified against the results obtained by the Monte Carlo code Serpent using continuous energy nuclear data. A code-to-code comparison between Serpent and RAST-F showed good agreement in terms of time-dependent reactivity and CR worth. The discrepancy was less than 160 pcm for reactivity and less than 110 pcm for CR worth. RAST-F solution was almost identical to the measurement data in terms of neutron population and reactivity. All the calculated CR worth results agreed with experimental results within two standard deviations of experimental uncertainty for all CRs and CR groups. This work demonstrates that the RAST-F code system can be a potential tool for analyzing time-dependent phenomena in fast reactors.

THE INVESTIGATION OF BURNUP CHARACTERISTICS USING THE SERPENT MONTE CARLO CODE FOR A SODIUM COOLED FAST REACTOR

  • Korkmaz, Mehmet E.;Agar, Osman
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.407-412
    • /
    • 2014
  • In this research, we investigated the burnup characteristics and the conversion of fertile $^{232}Th$ into fissile $^{233}U$ in the core of a Sodium-Cooled Fast Reactor (SFR). The SFR fuel assemblies were designed for burning $^{232}Th$ fuel (fuel pin 1) and $^{233}U$ fuel (fuel pin 2) and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method) and TTA (Transmutation Trajectory Analysis) method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff) was between 0.964 and 0.954 and peaking factor is 1.88867.

Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

  • Garcia, Manuel;Vocka, Radim;Tuominen, Riku;Gommlich, Andre;Leppanen, Jaakko;Valtavirta, Ville;Imke, Uwe;Ferraro, Diego;Uffelen, Paul Van;Milisdorfer, Lukas;Sanchez-Espinoza, Victor
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3133-3150
    • /
    • 2021
  • This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.

Simulation of low-enriched uranium burnup in Russian VVER-1000 reactors with the Serpent Monte-Carlo code

  • Mercatali, L.;Beydogan, N.;Sanchez-Espinoza, V.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2830-2838
    • /
    • 2021
  • This work deals with the assessment of the burnup capabilities of the Serpent Monte Carlo code to predict spent nuclear fuel (SNF) isotopic concentrations for low-enriched uranium (LEU) fuel at different burnup levels up to 47 MWd/kgU. The irradiation of six UO2 experimental samples in three different VVER-1000 reactor units has been simulated and the predicted concentrations of actinides up to 244Cm have been compared with the corresponding measured values. The results show a global good agreement between calculated and experimental concentrations, in several cases within the margins of the nuclear data uncertainties and in a few cases even within the reported experimental uncertainties. The differences in the performances of the JEFF3.1.1, ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data libraries (NDLs) have also been assessed and the use of the newly released ENDF/B-VIII.0 library has shown an increased accuracy in the prediction of the C/E's for some of the actinides considered, particularly for the plutonium isotopes. This work represents a step forward towards the validation of advanced simulation tools against post irradiation experimental data and the obtained results provide an evidence of the capabilities of the Serpent Monte-Carlo code with the associated modern NDLs to accurately compute SNF nuclide inventory concentrations for VVER-1000 type reactors.

An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis

  • Lin, Ching-Sheng;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2733-2742
    • /
    • 2020
  • This paper presents an assessment of applicability of the multigroup cross sections generated with Monte Carlo tools to the fast reactor analysis based on transport calculations. 33-group cross section sets were generated for simple one- (1-D) and two-dimensional (2-D) sodium-cooled fast reactor problems using the SERPENT code and applied to deterministic steady-state and depletion calculations. Relative to the reference continuous-energy SERPENT results, with the transport corrected P0 scattering cross section, the k-eff value was overestimated by 506 and 588 pcm for 1-D and 2-D problems, respectively, since anisotropic scattering is important in fast reactors. When the scattering order was increased to P5, the 1-D and 2-D problem errors were increased to 577 and 643 pcm, respectively. A sensitivity and uncertainty analysis with the PERSENT code indicated that these large k-eff errors cannot be attributed to the statistical uncertainties of cross sections and they are likely due to the approximate anisotropic scattering matrices determined by scalar flux weighting. The anisotropic scattering cross sections were alternatively generated using the MC2-3 code and merged with the SERPENT cross sections. The mixed cross section set consistently reduced the errors in k-eff, assembly powers, and nuclide densities. For example, in the 2-D calculation with P3 scattering order, the k-eff error was reduced from 634 pcm to -223 pcm. The maximum error in assembly power was reduced from 2.8% to 0.8% and the RMS error was reduced from 1.4% to 0.4%. The maximum error in the nuclide densities at the end of 12-month depletion that occurred in 237Np was reduced from 3.4% to 1.5%. The errors of the other nuclides are also reduced consistently, for example, from 1.1% to 0.1% for 235U, from 2.2% to 0.7% for 238Pu, and from 1.6% to 0.2% for 241Pu. These results indicate that the scalar flux weighted anisotropic scattering cross sections of SERPENT may not be adequate for application to fast reactors where anisotropic scattering is important.

Definition of the neutronics benchmark of the NuScale-like core

  • Emil Fridman;Yurii Bilodid;Ville Valtavirta
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3639-3647
    • /
    • 2023
  • This paper defines a 3D full core neutronics benchmark which is based on the NuScale small modular reactor (SMR) concept. The paper provides a detailed description of the NuScale-like core, a list of expected outputs, and a reference solution to the benchmark exercises obtained with the Monte Carlo code Serpent. The benchmark was developed in the framework of the Euratom McSAFER project and can be used for verification of computational chains dedicated to 3D full-core neutronics simulations of water cooled SMRs. The paper is supplemented with a digital data set to ease the modeling process.

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors

  • Cechet, A.;Altieri, S.;Barani, T.;Cognini, L.;Lorenzi, S.;Magni, A.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1893-1908
    • /
    • 2021
  • In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.

Neutronics study on small power ADS loaded with recycled inert matrix fuel for transuranic elements transmutation using Serpent code

  • Vu, Thanh Mai;Hartanto, Donny;Ha, Pham Nhu Viet
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2095-2103
    • /
    • 2021
  • A small power ADS design using thorium oxide and diluent matrix reprocessed fuel is proposed for a high transmutation rate, small reactivity swing, and strong safety features. Two fuel matrices (CERCER and CERMET) and different recycled fuel compositions recovered from UO2 spent fuels with 45 GWd/tU and 60 GWd/tU burnup were investigated to determine the suitable fuel for the ADS. It was found that the transmutation of each isotope depends on TRU initial loading amount. After examining the cores, the results show that CERCER fueled ADS has a negative coolant void reactivity (CVR) and a smaller radiotoxicity at discharge compared to that of CERMET core. It implies that CERCER fuel has enhanced safety features and more flavor in terms of radiotoxicity management. To increase fuel utilization and core operation efficiency, a simple assembly shuffling pattern for the CERCER fueled ADS is also proposed. Eigenvalue and burnup calculations were conducted using Serpent 2 with ENDF/B-VII.0 library in both kcode and external source modes, and it indicates that the results of transmutation analyses obtained by kcode only is reliable to discuss the transmutation potential of ADS. Burnup calculation with the fixed-source mode is essential to be used for more practical results of the transmutation by ADS.

Analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS using the Serpent Monte Carlo code and the ENDF/B-VIII.0 nuclear data library

  • Hartanto, Donny;Liem, Peng Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2725-2732
    • /
    • 2020
  • This paper presents the neutronics benchmark analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS (Reaktor Serba Guna G.A. Siwabessy) calculated by the Serpent Monte Carlo code and the newly released ENDF/B-VIII.0 nuclear data library. RSG-GAS is a 30 MWth pool-type material testing research reactor loaded with plate-type low-enriched uranium fuel using light water as a coolant and moderator and beryllium as a reflector. Two groups of critical benchmark problems are derived on the basis of the criticality and control rod calibration experiments of the first core of RSG-GAS. The calculated results, such as the neutron effective multiplication factor (k) value and the control rod worth are compared with the experimental data. Moreover, additional calculated results, including the neutron spectra in the core, fission rate distribution, burnup calculation, sensitivity coefficients, and kinetics parameters of the first core will be compared with the previous nuclear data libraries (interlibrary comparison) such as ENDF/B-VII.1 and JENDL-4.0. The C/E values of ENDF/B-VIII.0 tend to be slightly higher compared with other nuclear data libraries. Furthermore, the neutron reaction cross-sections of 16O, 9Be, 235U, 238U, and S(𝛼,𝛽) of 1H in H2O from ENDF/B-VIII.0 have substantial updates; hence, the k sensitivities against these cross-section changes are relatively higher than other isotopes in RSG-GAS. Other important neutronics parameters such as kinetics parameters, control rod worth, and fission rate distribution are similar and consistent among the nuclear data libraries.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.