• 제목/요약/키워드: Serotonin receptors

검색결과 73건 처리시간 0.025초

Effects of Serotonin on the Induction of Long-term Depression in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.337-343
    • /
    • 2010
  • Long-term potentiation (LTP) and long-term depression (LTD) have both been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. In a previous study, we suggested that a developmental increase in serotonin [5-hydroxytryptamine (5-HT)] might be involved in the decline of LTP, since 5-HT inhibited its induction. In the present study, to further understand the role of 5-HT in a developmental decrease in plasticity, we investigated the effect of 5-HT on the induction of LTD in the pathway from layer 4 to layer 2/3. LTD was inhibited by 5-HT ($10{\mu}M$) in 5-week-old rats. The inhibitory effect was mediated by activation of 5-$HT_2$ receptors. Since 5-HT also regulates the development of visual cortical circuits, we also investigated the role of 5-HT on the development of inhibition. The development of inhibition was retarded by chronic (2 weeks) depletion of endogenous 5-HT in 5-week-old rats, in which LTD was reinstated. These results suggest that 5-HT regulates the induction of LTD directly via activation of 5-$HT_2$ receptors and indirectly by regulating cortical development. Thus, the present study provides significant insight into the roles of 5-HT on the development of visual cortical circuits and on the age-dependent decline of long-term synaptic plasticity.

Fluoxetine Modulates Corticostriatal Synaptic Transmission through Postsynaptic Mechanism

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Cho, Young-Jin;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Fluoxetine, widely used for the treatment of depression, is known to be a selective serotonin reuptake inhibitor (SSRI), however, there are also reports that fluoxetine has direct effects on several receptors. Employing whole-cell patch clamp techniques in rat brain slice, we studied the effects of fluoxetine on corticostriatal synaptic transmission by measuring the change in spontaneous excitatory postsynaptic currents (sEPSC). Acute treatment of rat brain slice with fluoxetine ($10{\mu}M$) significantly decreased the amplitude of sEPSC ($8.1{\pm}3.3$%, n=7), but did not alter its frequency ($99.1{\pm}4.7$%, n=7). Serotonin ($10{\mu}M$) also significantly decreased the amplitude ($81.2{\pm}3.9$%, n=4) of sEPSC, but did not affect its frequency ($105.8{\pm}8.0$, n=4). The effect of fluoxetine was found to have the same trend as that of serotonin. We also found that the inhibitory effect of fluoxetine on sEPSC amplitude ($93.0{\pm}1.9$%, n=8) was significantly blocked, but not serotonin ($84.3{\pm}1.6$%, n=4), when the brain slice was incubated with p-chloroamphetamine ($10{\mu}M$), which depletes serotonin from the axon terminals and blocks its reuptake. These results suggest that fluoxetine inhibits corticostriatal synaptic transmission through postsynaptic, and that these effects are exerted through both serotonin dependent and independent mechanism.

Potentiation of the glycine response by serotonin on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice

  • Nguyen, Hoang Thi Thanh;Cho, Dong Hyu;Jang, Seon Hui;Han, Seong Kyu;Park, Soo Joung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.271-279
    • /
    • 2019
  • The lamina II, also called the substantia gelatinosa (SG), of the trigeminal subnucleus caudalis (Vc), is thought to play an essential role in the control of orofacial nociception. Glycine and serotonin (5-hydroxytryptamine, 5-HT) are the important neurotransmitters that have the individual parts on the modulation of nociceptive transmission. However, the electrophysiological effects of 5-HT on the glycine receptors on SG neurons of the Vc have not been well studied yet. For this reason, we applied the whole-cell patch clamp technique to explore the interaction of intracellular signal transduction between 5-HT and the glycine receptors on SG neurons of the Vc in mice. In nine of 13 neurons tested (69.2%), pretreatment with 5-HT potentiated glycine-induced current ($I_{Gly}$). Firstly, we examined with a $5-HT_1$ receptor agonist (8-OH-DPAT, $5-HT_{1/7}$ agonist, co-applied with SB-269970, $5-HT_7$ antagonist) and antagonist (WAY-100635), but $5-HT_1$ receptor agonist did not increase $I_{Gly}$ and in the presence of $5-HT_1$ antagonist, the potentiation of 5-HT on $I_{Gly}$ still happened. However, an agonist (${\alpha}$-methyl-5-HT) and antagonist (ketanserin) of the $5-HT_2$ receptor mimicked and inhibited the enhancing effect of 5-HT on $I_{Gly}$ in the SG neurons, respectively. We also verified the role of the $5-HT_7$ receptor by using a $5-HT_7$ antagonist (SB-269970) but it also did not block the enhancement of 5-HT on $I_{Gly}$. Our study demonstrated that 5-HT facilitated $I_{Gly}$ in the SG neurons of the Vc through the $5-HT_2$ receptor. The interaction between 5-HT and glycine appears to have a significant role in modulating the transmission of the nociceptive pathway.

Calcium Ions are Involved in Modulation of Melittin-induced Nociception in Rat: II. Effect of Calcium Chelator

  • Shin, Hong-Kee;Lee, Kyung-Hee;Cho, Chul-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권6호
    • /
    • pp.297-302
    • /
    • 2006
  • Melittin, a major component of bee venom, produces a sustained decrease in mechanical threshold, and an increase in spontaneous flinchings and paw thickness, which are characteristics similar to those induced by whole bee venom. Melittin-induced nociception has been known to be modulated by the changes in the activity of excitatory amino acid receptors, voltage-dependent calcium channels, cyclooxygenase and serotonin receptors. The present study was undertaken to investigate the role of calcium chelators (TMB-8 & Quin 2) in melittin-induced nociceptive responses. Changes of mechanical threshold and spontaneous flinching behaviors were measured at a given time point following intraplantar injection of melittin ($30{\mu}g/paw$). Intrathecal or intraplantar pre-administration and intrathecal posttreatment of TMB-8 and Quin 2 significantly prevented the melittin-induced reduction of mechanical threshold, and intraplantar or intrathecal pre-treatment of TMB-8 and Quin 2 suppressed melittininduced flinching behaviors. These results indicate that calcium ion in the spinal dorsal horn neurons and peripheral nerves plays an important role in the production and maintenance of mechanical allodynia and spontaneous pain by melittin.

수소이온농도 변화의 수축물질에 따른 가토신동맥 수축에 미치는 영향과 기전 (Effects of $H^{+}$ on the Contraction Induced by Various Agonists in the Renal Artery of a Rabbit)

  • 장석종;김세훈;전병화;박해근
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.161-170
    • /
    • 1990
  • The effects of $H^{+}$ on the arterial contraction and their mechanisms were investigated in the renal artery of a rabbit. The helical strips of isolated renal artery were immersed in the HEPES-buffered or $CO_{2}/HCO_{3}^{-}$-buffered Tyrode's solution. The contractions induced by agonists (norepinephrine, histamine, serotonin and angiotensin II) or high $K^{+}$ were observed with change of extracellular or intracellular $H^{+}$ concentration. The contractions induced by norepinephrine, histamine, serotonin, angiotensin II or high $K^{+}$ in HEPES-buffered Tyrode's solution were inhibited by increase in extracellular $H^{+}$ concentration and potentiated by decrease in extracellular $H^{+}$ concentration. The degrees of these effects were most evident in the contraction induced by serotonin and angiotensin II, moderate in those by histamine and high $K^{+}$, and least in those by norepinephrine. Maximal contraction by norepinephrine, histamine and high $K^{+}$ were not influenced by change in extracellular $H^{+}$ concentration, but influenced in those contration by serotonin and angiotensin II. The attenuated contractions by an acidic pH were not returned to the level of contraction at normal pH (7.4) by elevation of extracellular $Ca{2+}$ concentration. The agonists (norepinephrine, histamine and serotonin)-induced contractions in $Ca{2+}$-free Tyrode's solution were also attenuated by increase in extracellular $H^{+}$ concentration and potentiated by decrease in extracellular $H^{+}$ concentration. Elevation of $Pco_{2}$ in the $CO_{2}/HCO_{3}^{-}$-buffered Tyrode's solution, which increase the intracellular $H^{+}$ concentration, at constant extracellular pH (7.4), increased the contraction by 30 mM $K^{+}$. From the above results, it is suggested that the decrease in contractions by increase in extracellular $H^{+}$ concentration may be resulted from that $H^{+}$ make the receptors less sensitive to agonists and cell membrane hyperpolarize and then inhibit the $Ca{2+}$ influx as well as $Ca{2+}$ release from intracellular $Ca{2+}$ storage site.

  • PDF

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • 제28권1호
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.

Antipsychotics for patients with pain

  • Shin, Sang Wook;Lee, Jin Seong;Abdi, Salahadin;Lee, Su Jung;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • 제32권1호
    • /
    • pp.3-11
    • /
    • 2019
  • Going back to basics prior to mentioning the use of antipsychotics in patients with pain, the International Association for the Study of Pain (IASP) definition of pain can be summarized as an unpleasant experience, composed of sensory experience caused by actual tissue damage and/or emotional experience caused by potential tissue damage. Less used than antidepressants, antipsychotics have also been used for treating this unpleasant experience as adjuvant analgesics without sufficient evidence from research. Because recently developed atypical antipsychotics reduce the adverse reactions of extrapyramidal symptoms, such as acute dystonia, pseudo-parkinsonism, akathisia, and tardive dyskinesia caused by typical antipsychotics, they are expected to be used more frequently in various painful conditions, while increasing the risk of metabolic syndromes (weight gain, diabetes, and dyslipidemia). Various antipsychotics have different neurotransmitter receptor affinities for dopamine (D), 5-hydroxytryptamine (5-HT), adrenergic (${\alpha}$), histamine (H), and muscarinic (M) receptors. Atypical antipsychotics antagonize transient, weak $D_2$ receptor bindings with strong binding to the $5-HT_{2A}$ receptor, while typical antipsychotics block long-lasting, tight $D_2$ receptor binding. On the contrary, antidepressants in the field of pain management also block the reuptake of similar receptors, mainly on the 5-HT and, next, on the norepinephrine, but rarely on the D receptors. Antipsychotics have been used for treating positive symptoms, such as delusion, hallucination, disorganized thought and behavior, perception disturbance, and inappropriate emotion, rather than the negative, cognitive, and affective symptoms of psychosis. Therefore, an antipsychotic may be prescribed in pain patients with positive symptoms of psychosis during or after controlling all sensory components.

Lidocaine이 아미노산 신경전도물질의 유리, 수용체 결합, 및 섭취에 미치는 효과에 관한 시험관내 실험에 관한 연구 (Effect of Lidocaine on the Release, Receptor Binding and Uptake of Amino Acid Neurotransmitters In vitro)

  • 오안민;정동균;모리 마사까즈
    • 대한약리학회지
    • /
    • 제24권1호
    • /
    • pp.17-29
    • /
    • 1988
  • Lidocaine 투여에 의한 전신경련의 작용기전을 추구하고자 흰쥐의 전체뇌를 또는 선조체, 해마, 및 중뇌를 부위별로 적출하여 synaptosomes를 마련하고 $20{\mu}M$ veratrine또는 $5{\mu}M\;K^+$ 첨가에 의한 신경 전달물질 (Aspartic acid, Glutamic acid, GABA, Norepinephrine)의 유리촉진작용에 미치는 lidocaine, propranolol, norepinephrine 또는 serotonin의 억제효과를 관찰하였고 $[^3H]M$$[^3H]-glutamic$ acid의 synaptosomes로의 섭취에 미치는 lidocaine의 영향도 관찰하였다. 아울러 crude synaptic membrane을 이용하여 $[^3H]-GABA$$[^3H]-glutamic$ acid의 수용체 결합에 미치는 lidocaine의 작용도 실험하여 다음과 같은 결과를 얻었다. 1. Lidocaine과 propranolol은 veratrine에 의한 aspartate, glutamate, GABA 및 norepinephrine의 유리를 억제하였고, 그중 GABA 유리에 대한 억제작용이 가장 현저하였다. 2. Norepinephrine과 serotonin은 $100{\mu}M$의 농도에서 veratrine에 의한 aspartate, glutamate 및 GABA의 유리촉진 작용을 억제하였다. 3. Lidocaine은 veratrine에 의한 아미노산 유리촉진 효과에 대해서 보다 과 $K^+$ 에 의한 유리촉진 효과를 더욱 약하게 억제하였고 특히 GABA 유리에 대한 억제작용이 가장 약했다. 4. GABA와 glutamic acid의 수용체 결합과 synaptosomes로의 섭취는 1 mM 이하의 lidocaine농도에서 크게 면화가 없었다. 이상의 결과로 보아 신경전도물질의 veratrine에 의한 유리가 과 $K^+$에 의한 유리보다 더욱 생리적이라는 점을 고려한다면, lidocaine 경련은 lidocaine이 흥분성 전도물질인 aspartate나glutamate보다 억제성 전도물질인 GABA의 유리를 더욱 현저하게 억제함으로서 나타남을 시사한다.

  • PDF

Rapid Synthesis of Arylpiperazine Derivatives for Imaging 5-HT1A Receptor under Microwave Irradiation

  • Park, Sang-Hyun;Gwon, Hui-Jeong;Lee, Hyo-Sun;Park, Kyung-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1701-1705
    • /
    • 2005
  • We have established an efficient method for the synthesis of the arylpiperazine derivatives in which the acylation of 2-aminopyridine, the coupling reaction of the acyl compound with piperazines, and reduction of the arylpiperazines were performed under a microwave irradiation (300 W) to afford the corresponding target compounds in quantitative yields. In all cases, the reaction times were remarkably reduced when compared with those of the conventional method.

Progress of Pruritus Research in Atopic Dermatitis

  • Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.246-256
    • /
    • 2010
  • Atopic dermatitis is a common skin disease affecting up to 10% of children and approximately 2% of adults. Atopic dermatitis exhibits four major symptoms, including intense itching, dry skin, redness and exudation. The "itch-scratch-itch" cycle is one of the major features in atopic dermatitis. The pathophysiology and neurobiology of pruritus is unclear. Currently there are no single and universally effective pharmacological antipruritic drugs for treatment of atopic dermatitis. Thus, controlling of itch is a very important unmet need in patients suffering from atopic dermatitis. This article will update progress during the past 10 years of research in the field of pruritus of atopic dermatitis, focusing on aspects of pruritogens (including inflammatory lipids, histamine, serotonin, proteinases, proteinase-activating receptors, neurotransmitters, neuropeptides, and opioid peptides), antipruritic therapies, and emerging new targets. Based on recent progress, researchers expect to identify exciting possibilities for improved treatments and to develop new antipruritic drugs acting through novel targets, such as histamine H4 receptor, gastrin-releasing peptide receptor, MrgprA3, thromboxane A2 receptor and the putative SPC receptor.