• 제목/요약/키워드: Serotonin Antagonists

검색결과 28건 처리시간 0.021초

Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy

  • Yin, Mei;Kim, Yeo-Ok;Choi, Jeong-Il;Jeong, Seongtae;Yang, Si-Ho;Bae, Hong-Beom;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • 제33권4호
    • /
    • pp.318-325
    • /
    • 2020
  • Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect. Methods: Sprague-Dawley rats (weight 150-180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography. Results: Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction. Conclusions: NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.

Evaluation of Gene Expression Changes of Serotonin Receptors, 5-HT3AR and 5-HT2AR as Main Stress Factors in Breast Cancer Patients

  • Hejazi, Seyed Hesam;Ahangari, Ghasem;Pornour, Majid;Deezagi, Abdolkhaleagh;Aminzadeh, Saeed;Ahmadkhaniha, Hamid Reza;Akbari, Mohamad Esmail
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4455-4458
    • /
    • 2014
  • Breast cancer is a serious and potentially lethal multi-factor disease among 40-50 aged women in both developed and developing countries. Also, various studies have pointed to roles of neurotransmitters like serotonin in development of cancers, through action on various types of receptors. This study was conducted to evaluate serotonin receptor (5HT2AR and 5HT3AR) genes expression in peripheral blood mononuclear cells (PBMCs) of breast cancer patients in comparison with the healthy people and in the MCF7 cell line. Peripheral blood samples were obtained from 30 patients and 30 healthy individuals. Total RNA was extracted from PBMCs and MCF-7 cells. and 5HT2AR and 5HT3AR were detected by RT-PCR techniques. Finally, serotonin receptor gene expression variation in breast cancer patients and MCF-7 cells were determined by real time-PCR. This latter indicated significant promotion in expression of 5HT3AR and 5HT2AR in PBMCs in breast cancer patients but expression of 5HT2AR in the MCF-7 cell line was significantly decreased. In conclusion, after performing complimentary tests, determine of gene expression changes in serotonin receptors (5HT2AR and 5HT3AR) may be useful as a new approach in treatment of breast cancer based on use of antagonists.

흉곽내 악성종양환자에서 Cisplatin 투여시 5-hydroxyindoleacetic Acid (5-HIAA)의 변화 (Urinary 5-hydroxyindoleacetic Acid(5-HIAA) Excretion Before and During Cisplatin Chemotherapy in Patients with Intrathoracic Malignancy)

  • 양동규;장윤수;김영삼;이준구;박재민;안강현;김세규;정현철;장준;안철민;김성규;이원영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제46권6호
    • /
    • pp.811-816
    • /
    • 1999
  • Background : Nausea and vomiting associated with chemotherapy are common side effects which remain difficult to control. Acute phase nausea and vomiting (0-24 hours after induction of chemotherapy) parallels plasma serotonin release, which explains the effectiveness of $5-HT_3$ receptor antagonists. Serotonin released from gastrointestinal enterochromaffin cells may mediate chemotherapy-induced emesis. In this study, we analyzed urinary excretion of 5-HIAA, the main metabolite of serotonin. Methods : Eight men and four women were studied in their cisplatin chemotherapy cycle. Urinary 5-hydroxyindoleaoetic aicd (HIAA) levels were determined before and during a 24-hour period under ondansetron prophylaxis. Results : Urinary 5-HIAA excretion for a 24-hour period was increased in all patients after induction of cisplatin (P=0.002). Conclusion : Cisplatin chemotherapy is associated with serotonin release in the acute phase. Our finding may provide evidence for a relationship between emesis and serotonin following cisplatin chemotherapy.

  • PDF

사이토카인과 우울증 (Cytokines and Depression)

  • 김용구
    • 생물정신의학
    • /
    • 제15권3호
    • /
    • pp.175-185
    • /
    • 2008
  • Accumulating evidence has suggested the existence of reciprocal communication between immune, endocrine, and neurotransmitter system. Cytokine hypothesis of depression implies that increased pro-inflammatory cytokine such as -1, IL-6, IL-12, TNF-${\alpha}$, and IFN-${\gamma}$ in major depression, acting neuromodulators, play a key role in the mediation of behavioral, neuroendocrine, and neurochemical disturbances in depression. Concerning the relation between cytokines and serotonin metabolism, pro-inflammatory cytokines have profound effects on the metabolism of brain serotonin through the enzyme indoleamine-2,3-dioxygenase(IDO) that metabolizes tryptophan, the precursor of 5-HT to neurodegenerative quinolinate and neuroprotective kynurenate. The neurodegeneration process is reinforced by the neurotoxic effect of the hypercortisolemia during depression. From this perspective, it is possible that efficacy of antidepressants in the treatment of depression may, at least in part, rely on downregulation of pro-inflammatory cytokine synthesis. So, the use of cytokine synthesis inhibitors or cytokine antagonists may be a new treatment approach in depression. However, at present the question whether cytokines play a causal role in the onset of depression or are mere epiphenomena sustaining depressive symptoms remains to be elucidated. Nevertheless, cytokine hypothesis has created new perspectives in the study of psychological and pathophysiological mechanism that are associated with major depression, as well as the prospect for developing a new generation antidepressants.

  • PDF

Calcium Ions are Involved in Modulation of Melittin-induced Nociception in Rat: I. Effect of Voltage-gated Calcium Channel Antagonist

  • Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.255-261
    • /
    • 2006
  • Melittin-induced nociceptive responses are mediated by selective activation of capsaicin-sensitive primary afferent fibers and are modulated by excitatory amino acid receptor, cyclooxygenase, protein kinase C and serotonin receptor. The present study was undertaken to investigate the peripheral and spinal actions of voltage-gated calcium channel antagonists on melittin-induced nociceptive responses. Changes in mechanical threshold and number of flinchings were measured after intraplantar (i.pl.) injection of melittin $(30\;{\mu}g/paw)$ into mid-plantar area of hindpaw. L-type calcium channel antagonists, verapamil [intrathecal (i.t.), 6 or $12\;{\mu}g$; i.pl.,100 & $200\;{\mu}g$; i.p., 10 or 30 mg], N-type calcium channel blocker, ${\omega}-conotoxin$ GVIA (i.t., 0.1 or $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) and P-type calcium channel antagonist, ${\omega}-agatoxin$ IVA (i.t., $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) were administered 20 min before or 60 min after i.pl. injection of melittin. Intraplantar pre-treatment and i.t. pre- or post-treatment of verapamil and ${\omega}-conotoxin$ GVIA dose-dependently attenuated the reduction of mechanical threshold, and melittin-induced flinchings were inhibited by i.pl. or i.t. pre-treatment of both antagonists. P-type calcium channel blocker, ${\omega}-agatoxin$ IVA, had significant inhibitory action on flinching behaviors, but had a limited effect on melittin-induced decrease in mechanical threshold. These experimental findings suggest that verapamil and ${\omega}-conotoxin$ GVIA can inhibit the development and maintenance of melittin-induced nociceptive responses.

Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

  • Nong, Lidan;Ma, Jue;Zhang, Guangyan;Deng, Chunyu;Mao, Songsong;Li, Haifeng;Cui, Jianxiu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.441-447
    • /
    • 2016
  • Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (${\alpha}_2$-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of $10^{-8}{\sim}10^{-6}mol/L$, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or $3{\times}10^{-9}mmol/L$) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial ${\alpha}_2$-adrenoceptor and nitric oxide synthase.

우울증 치료에서 빠른 효과와 적은 부작용을 가진 새로운 N-Methyl-D-Aspartate(NMDA) 수용체 길항제 (Other N-Methyl-D-Aspartate (NMDA) Receptor Antagonists with a Rapid Onset of Action and Less Side Effect in the Treatment of Depression)

  • 최범성;이화영
    • 생물정신의학
    • /
    • 제22권4호
    • /
    • pp.149-154
    • /
    • 2015
  • Mood disorder is a common psychiatric illness with a high lifetime prevalence in the general population. Many prescribed antidepressants modulate monoamine neurotransmitters including serotonin, norepinephrine and dopamine. There has been greater focus on the major excitatory neurotransmitter in the human brain, glutamate, in the pathophysiology and treatment of major depressive disorder (MDD). Recently, ketamine, an N-methyl-D-aspartate receptor antagonist, has received attention and has been investigated for clinical trials and neurobiological studies. In this article, we will review the clinical evidence for glutamatergic dysfunction in MDD, the progress with ketamine as a rapidly acting antidepressant, and other N-methyl-D-aspartate receptor antagonist for treatment-resistant depression.

Majarine의 중추신경계에 대한 작용(II) -마우스에 있어서 Majarine의 체온감소에 미치는 dopamine, serotonin 길항제의 작용에 관한 연구- (The Actions of Majarine on the Central Nervous System (II) -The Effects of Dopaminergic and Serotonergic Antagonists on Majarine-induced Hypothermia in the Mouse-)

  • 박영현;이종화;김유재;조병헌
    • 대한약리학회지
    • /
    • 제21권2호
    • /
    • pp.99-110
    • /
    • 1985
  • 한국특산 매자나무(Berberis Koreana Palibin)의 뿌리에서 분리한 majarine은 isoquinoline 알카로이드로서 본 교실에서는 중추신경계에 대한 약리작용을 검토하고 있다. Majarine을 마우스 복강내로 투여하여 직장온도 변화와 haloperidol, cyproheptadine과 reserpine 등에 대한 약물 상호작용을 관찰하여 다음과 같은 성적을 얻었다. Majarine은 마우스에 있어서 용량의존적으로 현저한 체온감소를 나타내었으나, 0.1 mg/kg투여시 체온증가의 유의성을 보였다. 체온감소는 haloperidol과 cyproheptadine으로 억제되었다. Reserpine처치 마우스에 있어서 ${\alpha}$-methyl-p-tyrosine으로 전처치한 다음 majarine 2.0mg/kg 투여시 체온감소를 나타내었다. 이러한 결과로 보아 majarine의 체온변화는 dopamine과 serotonin수용체에 관련성이 있다고 사려되고, 체온감소는 dopamine수용체에 직접적으로 작용한다고 생각되는 바이다.

  • PDF

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif;Nagarajan, Shanthi;Doddareddy, Munikumar Reddy;Cho, Yong-Seo;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2008-2014
    • /
    • 2011
  • Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

쥐의 신경병증성 통증 모델에서 트라마돌의 진통효과 (Antinociceptive Effects of Tramadol on the Neuropathic Pain in Rats)

  • 송경화;김현정;염광원
    • The Korean Journal of Pain
    • /
    • 제14권2호
    • /
    • pp.150-155
    • /
    • 2001
  • Background: Tramadol is known to be a weak opioid. However, it has also been shown that tramadol is an effective norepinephrine and serotonin uptake blocker, which may be effective in the treatment of neuropathic pain. The present study was undertaken in order to assess the antinociceptive action of tramadol and to investigate possible antinociceptive mechanisms by using antagonists in an animal neuropathic pain models in rats. Methods: Rats were prepared with tight ligation at the left 5 and 6th lumbar spinal nerves (Kim and Chung's neuropathic pain model). The antinociceptive effects of tramadol (10, 20, and 50 mg/kg i.p.) in rats with neuropathic pain were assessed. Additionally, following coadministration of antagonists such as naloxone (1 mg/kg i.p.), yohimbine (1 mg/kg i.p.) and ritanserin (1 mg/kg i.p.) with 50 mg/kg of tramadol, the responses to mechanical and thermal stimuli were measured over a two-hour period. Results: Tramadol displayed potent antinociceptive effects in a dose-dependent manner on rats with neuropathic pain (P < 0.05). The effects of tramadol were inhibited by coadministered naloxone and yohimbine in rats with mechanical and thermal allodynia, respectively (P < 0.05). However, there were no significant changes in the pain behaviors in the case of ritanserin. Conclusions: Tramadol showed significant antinociceptive effects in rats with regards to neuropathic pain against both mechanical and thermal allodynia. The antinociceptive effect on the mechanical stimuli is medicated via an opioid receptor. However, it appears that the antinociceptive effects on thermal allodynia are mediated via a noradrenalin receptor vice a serotonergic receptor.

  • PDF