• Title/Summary/Keyword: Serine

Search Result 1,381, Processing Time 0.029 seconds

Purification and Characterization of a Novel Serine Protease with Fibrinolytic Activity from Tenodera sinensis (Chinese Mantis) Egg Cases

  • Cho, So-Yean;Hahn, Bum-Soo;Kim, Yeong-Shik
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.579-584
    • /
    • 1999
  • Mantis egg fibrolase (MEF-3) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, DEAE Affi-Gel blue gel affinity chromatogragphy, and MONO-Q anion-exchange chromatography. This protease had a molecular weight of 35,600 Da as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions and its isoelectric point was 6.0. The N-terminal amino acids sequence was Ala-Thr-Gln-Asp-Asp-Ala-Pro-Pro-Gly-Leu-Ala-Arg-Arg. This sequence was 80% homologous to the serine protease from Tritirachium album. MEF-3 readily digested the ${\alpha}$-and ${\beta}$-chains of fibrinogen and more slowly the ${\gamma}$-chains. It showed strong proteolytic and fibrinolytic activities. Phenylmethanesulfonyl fluoride and chymostatin inhibited its proteolytic activity, while EDTA, EGTA, cysteine, ${\beta}$-mercaptoethanol, elastinal, tosyl-lysine chloromethylketone, and tosyl-amido-2-phenylethyl chloromethyl ketone did not affect its proteolytic activity. Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEF-3 was benzoyl-Phe-Val-Arg-p-nitroanilide. Based on these experimental results, we speculated that MEF-3 is a serine protease with a strong fibrin(ogen)olytic activity.

  • PDF

Cloning and Expression of Serratia marcescens Protease Gene in Escherichia coli

  • KIM, MYUNG-HEE;SOO-KEUN CHOI;BON-TAG KOO;BYUNG-SIK SHIN;CHEON-BAE SOHN;JEONG-IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.231-236
    • /
    • 1992
  • A 5.8 kb chromosomal DNA fragment of Serratia marcescens ATCC 27117 including an extracellular serine protease gene was cloned in Escherichia coli. The cloned gene(pSMP18) caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells. The protease purified from E. coli harboring pSMP18 was inactivated not by 100 mM EDTA but by 10 mM phenyl methyl sulfonyl flouride (PMSF). The molecular weight of the purified serine protease was about 66, 000 in the SDS-PAGE and the isoelectric point was approximately 5.7 in IEFㆍGel electrophoresis. The optimal pH and temperature for reaction of the purified serine protease were 9.5 and $45^\circ{C}$, respectively.

  • PDF

CLIP-domain serine proteases in Drosophila innate immunity

  • Jang, In-Hwan;Nam, Hyuck-Jin;Lee, Won-Jae
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.102-107
    • /
    • 2008
  • Extracellular proteases play an important role in a wide range of host physiological events, such as food digestion, extracellular matrix degradation, coagulation and immunity. Among the large extracellular protease family, serine proteases that contain a "paper clip"-like domain and are therefore referred to as CLIP-domain serine protease (clip-SP), have been found to be involved in unique biological processes, such as immunity and development. Despite the increasing amount of biochemical information available regarding the structure and function of clip-SPs, their in vivo physiological significance is not well known due to a lack of genetic studies. Recently, Drosophila has been shown to be a powerful genetic model system for the dissection of biological functions of the clip-SPs at the organism level. Here, the current knowledge regarding Drosophila clip-SPs has been summarized and future research directions to evaluate the role that clip-SPs play in Drosophila immunity are discussed.

Alteration of Substrate Specificity of Achromobacter Protease l (API) (Achrobacter Protease I (API)의 기질특이성의 전환)

  • Lim, Seong-Il;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.196-201
    • /
    • 1997
  • Assuming that Asp225 is the substrate specificity determinant of Achromobacter pretense I (APl) which is lysine-specific serine protease, the 225th residue was substituted for other amino acids with a hope that the substrate specificity of a mutant API is altered. Furthermore, to maturate preform of mutant API autocatalytically, Lys(-1) was also replaced by Met, Asp, or Glu. However, all the mutants were not expressed, or accumulated as inactive precursor proteins. This result implicats that Asp225 plays a critical rol in restricted substrate specificity as a lysylendopeptidase but the substrate specificity of API is not determined only by the nature of residue 225.

  • PDF

Adsorption Configuration of Serine on Ge(100): Competition between the Hydroxymethyl and Carboxyl groups of Serine During the Adsorption Reaction

  • Kim, Ye-Won;Yang, Se-Na;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.182-182
    • /
    • 2011
  • We investigated the adsorption structures of serine on a Ge(100) surface by core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. The adsorption energies calculated using DFT methods suggested that four of six adsorption structures were plausible. These structures were the "O-H dissociated-N dative bonded structure", the "O-H dissociation bonded structure", the "Om-H dissociated-N dative bonded structure", and the "Om-H dissociation bonded structure" (where Om indicates the hydroxymethyl oxygen). These structures are equally likely, according to the adsorption energies alone. The core-level C 1s, N 1s, and O 1s CLPES spectra confirmed that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction, thereby favoring formation of the "O-H dissociated-N dative bonded" and "O-H dissociation bonded" structures at 0.30 ML and 0.60 ML, respectively. The experimental results were corroborated theoretically by calculating the reaction pathways leading to the two adsorption geometries. The reaction pathways indicated that the "O-H dissociated-N dative bonded structure" is the major product of serine adsorption on Ge(100) due to comparably stable adsorption energy.

  • PDF

Effect of Serine Protease Inhibitor on Follicular Development in the Rat Ovary (백서에서 Serine Protease 억제제가 난포성숙에 미치는 영향에 대한 연구)

  • Yoon, Byung-Koo;Lee, Jin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.1
    • /
    • pp.19-29
    • /
    • 1993
  • Plasminogen activator (PA)-plasmin system in follicular fluid is involved in the process leading to follicular rupture at ovulation. It is well known that PA is closely associated with cellular differentiation and tissue remodeling on evidences from the study of normal and malignant tissues. This study was designed to ascertain a potential role of PA in the ovarian folliculogenesis. Immature Sprague-Dawley rats were injected with pregnant mare serum gonadotropin, followed by injection of serine protease inhibitor (SPI; mixture of 1 mol/L benzamidine and 1 mol/L amino-caproic acid) into the unilateral ovarian bursa. In the control study, mechanical effect of bursal injection and contralateral ovarian effect SPI were ruled out. Total antral follicular areas relative to total ovarian cross-sectional areas was siginificantly lower in SPI-injected ovary than in saline-injected ovary. SPI injection decreased the relative antral follicular area by 33 % respectively. Electron microscopic finding of granulosa cell in the atretic follicle showed the presence of pyknotic nucleus, blurring of neucleolemma, degeneration of mitochondria and dilation of endoplasmic reticulum. After induction of ovulation with hCG, the number of oocytes released was significantly decreased in SPI-injected oviduct than in saline-injected oviduct. From above results, author discussed that PA may play a role not only in ovulation but also in some processes of folliculogenesis.

  • PDF

Synthetic Studies on Phospholipid Derivatives 1. Comparative Syntheses of (R)-and (S)-Glycerol Acetonide (Phospholipid 유도체에 관한 연구 1. (R)-과 (S)-Glycerol acetonide의 효과적인 비교합성)

  • Sung Ki Chung;B. E. Kim;K. S. Chang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.253-257
    • /
    • 1991
  • The optically active glycerol acetonides are often used as important chiral intermediates for many syntheses. In connection with the development of inhibitors of phospholipases, we have compared the synthetic routes to (S)-and (R)-glycerol acetonide from D-mannitol and D-isoascorbic acid, and L-serine and L-ascorbic acid, respectively. In our hands, the conversions of L-serine to (R)-glycerol acetonide and of D-mannitol to (S)-glycerol acetonide were found to be most effective.

  • PDF

Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association

  • Park, Pil Whan;Ahn, Jeong Yeal;Yang, Dongki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.433-440
    • /
    • 2016
  • Inositol-1,4,5-triphosphate [$IP_3$] receptors binding protein released with $IP_3$ (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Studies on the Components Korean Sake (Part 2) -Detection of the Free Amino Acids in Takju by Paper Partition Chromatography- (한국(韓國) 주류성분(酒類成分)에 관(關)한 연구(硏究) (제2보(第2報)) -Paper Chromatography에 의(依)한 탁주중(濁酒中)의 유리(遊離) Amino 산(酸)의 검색(檢索)-)

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.59-64
    • /
    • 1968
  • Takju (Korean native Sake) was mashed with two different materials. One of the material was polished rice and Nuruk(mold wheat), the other one was corn and Nuruk. The amino acids in those fermenting mashes were identified by paper partition chromatography at regular intervals. The results were summarized as follows; a) Following 14 kinds of amino acids were identified in the mash of rice material; lysine, valine, proline, leucine, serine, glycine, aspartic acid, alanine, cystine, tyrosine, histidine, glutamic acid, tryptophan and phenylalanine b) Following 12 kinds of amino acids were identified in the mash of corn material; lysine, valine, proline, leucine, serine, glycine, aspartic acid, alanine, cystine, histidine, argrinine and tryptophan. c) The main amino acids in the Takju mash according to the color density of the each amino acid spot on the paper chromatograms were checked as lysine, valine, leucine, serine, proline and glycine.

  • PDF