• Title/Summary/Keyword: Serine

Search Result 1,381, Processing Time 0.032 seconds

Studies on the Composition of Amino Acid in Retina and Lens Body of the Frogs (개구리 망막체와 수정체의 Amino 산 성분에 관한 연구)

  • 강성호
    • The Korean Journal of Zoology
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 1959
  • The retinae and the lens bodies of the frogs were hydrolyzed with 20% hydrochloric acid, and their amino acids were separated by paper chromatography. As a result of it the following were confirmed : (1) The retinae and the lens bodies were the same incomposition, and aspartic acid, glutamic acid, serine ,tyrosine, glycine, lysine arginine, threonine, alanine, histidine, proline, methionine, valine , phenylalanine, leucine, and two unknown substances were separated. (2) The free amino acids in the retinae were extracted with 80% ethyl alcohol and then separated by paper chromatography. Though their separation was not so definite , serine, gultaminc acid, and glycine were always separated regardless of the amount of the sample. When the amount of the smaple was enough , $\beta$-alanine , ${\gamma}$-amino butyric acid and methionine +valine were also separated. (2) The free amino acids in the retinae were extracted with 80% ethyl alcohol and then separated by paper chromatography. Though their separation was not so definite, serine, glutamic acid, and glycine were always separated regardless of the amount of the sample . When the amount of the sample was enough, $\beta$-alanine , ${\gamma}$-amino butyric acid and methionine + valine were also separated.

  • PDF

Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis

  • Kim, Hyun Jeong;Park, Jin Woo;Kang, Joo-Young;Seo, Sang-Beom
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.444-457
    • /
    • 2021
  • Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.

Effects of Mutation at Two Conserved Aspartate Residues and a Serine Residue on Functions of Yeast TSA 1 (Saccharomyces cerevisiae TSA1의 보존된 아스파트산 잔기 및 세린 잔기의 변이가 과산화효소 활성 및 샤페론 활성에 미치는 영향)

  • Lee, Songmi;Cho, Eun Yi;Kim, Kanghwa
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Alignment of 967 reference sequences of the typical 2-Cys peroxiredoxin family of proteins revealed that 10 amino acids were conserved, with over 99% identity. To investigate whether the conserved aspartic acid residues and serine residue affect the peroxidase and chaperone activity of the protein, we prepared yeast TSA1 mutant proteins in which aspartic acids at positions 75 and 103 were replaced by valine or asparagine, and serine at position 73 was replaced by alanine. By non-reducing SDS-PAGE, TSA1 and the S73A, D75V and D75N mutants were detected in dimeric form, whereas the D103V and D103N mutants were detected in various forms, ranging from high molecular-weight to monomeric. Compared with wild type TSA1, the D75N mutant exhibited 50% thioredoxin peroxidase activity, and the S73A and D75V mutants showed 25% activity. However, the D103V and D103N mutants showed no peroxidase activity. All proteins, except for the D103V and D103N mutants, exhibited chaperone activity at $43^{\circ}C$. Our results suggest that the two conserved aspartic acid residues and serine residue of TSA1 play important roles in its thioredoxin peroxidase activity, and D103 plays a critical role in its chaperone activity.

Dietary effect of royal jelly supplementation on epidermal levels of hydration, filaggrins, free amino acids and the related enzyme expression in UV irradiated hairless mice (자외선 조사와 병행된 로얄제리 식이 공급이 무모 생쥐의 표피 보습과 필라그린, 유리아미노산 함량 및 관련 대사 효소의 발현 변화에 미치는 영향)

  • Min, Jihyun;Lee, Yunju;Han, Sang-Mi;Choi, Yunhi
    • Journal of Nutrition and Health
    • /
    • v.46 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • Ultraviolet (UV) irradiation reduces epidermal hydration, which is paralleled by the reduction of natural moisturizing factors (NMFs). Of various NMFs, free amino acids (AAs) are major constituents generated by filaggrin degradation. In this study, we attempted to determine whether dietary supplementation of royal jelly (RJ) in UV-irradiated mice can alters epidermal levels of hydration, filaggrins, and free AAs as well as of peptidylarginine deiminase-3 (PAD3), an enzyme involved in filaggrin degradation processes. Albino hairless mice were fed either a control diet (group UV+: UV irradiated control) or diets with 1% RJ harvested from different areas in Korea (groups RJ1, RJ2, and RJ3) or imported from China (group RJ4) for six weeks in parallel with UV irradiation. A normal control group (group UV-) was fed a control diet without UV irradiation for six weeks. Reduced epidermal levels of hydration, total filaggrins, and PAD3 were observed in group UV+; in group RJ1, these levels were increased to a level similar to that of group UV-. In addition, profilaggrins, two repeat intermediates (2RI), a precursor with two filaggrin repeats, and filaggrin were increased. Although no alteration of AAs was observed in any of the groups, and glutamate and serine, major AAs of NMF in group RJ1 were higher than in group UV+. Despite the increased levels of PAD3, epidermal levels of hydration, filaggrins, glutamate, and serine in groups RJ2, RJ3, and RJ4 were similar to those in group UV+. Dietary supplementation of RJ1 improves epidermal hydration in parallel with enhanced expression and degradation of filaggrin, but not by increased protein expression of PAD3, along with increased generation of glutamate and serine.