• Title/Summary/Keyword: Series-Parallel

Search Result 968, Processing Time 0.032 seconds

Analysis of Parallel-Series 2 Transformer Half Bridge Converter without Output Inductor (출력 Inductor를 없앤 Parallel-Series 2 Transformer Half Bridge Converter)

  • Lee, S.W.;Lee, J.H.;Kim, Du-Ho;Cho, B.H.;Kim, W.S.;Lee, J.H.;Yang, C.S.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.189-190
    • /
    • 2012
  • 최근 전기 자동차가 현실화 되면서 자동차 내부의 Li-Ion 배터리와 전장 부품들 및 납축전지 간의 에너지를 변환하는 회로에 대한 요구가 커지고 있다. 이 회로는 높은 전압을 갖는 Li-Ion 배터리와 낮은 구동 전압을 갖는 다른 전장 부품들로 인해 출력 단이 대 전류를 취한다는 특징을 갖고 있는데 이로 인하여 출력 단의 도통 손실을 줄이기 위한 연구들이 계속되고 있다. 본 논문은 기존의 2 Transformer 형식의 브릿지 컨버터를 Parallel-Series로 연결시킨 회로를 제안하고 이 회로의 동작을 분석하였다. 제안한 회로는 2차 측에 인덕터가 존재하지 않는 Current-Fed방식으로 구동 되며, 이를 통해 도통 손실을 감소 시켰으며, 2차 측을 Series 형태로 쌓아 배터리 연계 시스템에서 문제가 되었던 Wide Range 입. 출력 시스템에서의 동작 문제를 해결하였다.

  • PDF

A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter (직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구)

  • Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

Reactive Power Control Algorithm of Grid-Connected Inverter at the Point of Common Coupling With Compensation of Series and Parallel Impedances (직병렬 임피던스 보상을 통한 계통 연계 분산전원 인버터의 PCC 무효전력 제어 알고리즘)

  • Heo, Cheol-Young;Song, Seung-Ho;Kim, Yong-Rae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2022
  • Due to space and geographical constraints, the power source may be located outside the island area, resulting in the considerable length of transmission line. In these cases, when an active power is transmitted, unexpected reactive power is generated at a point of common coupling (PCC). Unlike the power transmitted from the power generation source, the reactive power adversely affects the system. This study proposes a new algorithm that controls reactive power at PCC. Causes of reactive power errors are separated into parallel and series components, which allows the algorithm to compensate the reactive current of the inverter output and control reactive power at the PCC through calculations from the impedance, voltage, and current. The proposed algorithm has economic advantages by controlling the reactive power with the inverter of the power source itself, and can flexibly control power against voltage and output variations. Through the simulation, the algorithm was verified by implementing a power source of 3 [kVA] capacity connected to the low voltage system and of 5 [MVA] capacity connected to the extra-high voltage system. Furthermore, a power source of 3 [kVA] capacity inverter is configured and connected to a mock grid, then confirmed through experiments.

An Improved High Efficiency Resonant Converter for the Contactless Power Supply with a Low Coupling Transformer (낮은 커플링 변압기를 갖는 비접촉 전원의 개선된 고효율 공진 컨버터)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Comparing with the conventional transformer without the air gap, a contactless transformer with the large air gap between the long primary winding and the secondary winding has increased leakage inductance and reduced magnetizing inductance. For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system with the large air gap and the increased leakage inductance of the contactless transformer However, the high frequency series resonant converter has the disadvantages of the low efficiency and high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, the characteristics of the high efficiency and unit voltage gain are revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation based on the theoretical analysis and the 5kW experimental prototype.

A Novel Control Method of Combined System consists of Series Active Power Filter and Parallel Passive Power Filter to Compensate Current Harmonics and Unbalanced Source Voltages (전류 고조파와 불평형 전원 전압을 보상하는 직렬형 능동전력 필터와 병렬형 수동전력필터 병용시스템의 새로운 제어법)

  • O, Jae-Hun;Han, Yun-Seok;Kim, Yeong-Seok;Won, Chung-Yeon;Choe, Se-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.615-623
    • /
    • 2001
  • In this paper, we study a series active power filter to compensate current harmonics and unbalanced source voltages. Conventional control methods for compensating unbalanced source voltages use source voltages to calculate compensation voltages, and in addition use load voltages to regulate load voltages. But the proposed control method uses load voltage to compensate unbalanced source voltages and regulate load voltages. And we propose a control method to reduce current harmonics which can calculate compensation voltages directly from source currents and load voltages. By well-matched operation of two control methods, the series active power filter can compensate current harmonics, unbalanced source voltages, and regulate load voltages. We compose a combined system of the series active power filter and parallel passive filters to confirm a validity of proposed control methods. The results from experiments are presented to demonstrate effectiveness of the proposed method.

  • PDF

Investigation of a SP/S Resonant Compensation Network Based IPT System with Optimized Circular Pads for Electric Vehicles

  • Ma, Chenglian;Ge, Shukun;Guo, Ying;Sun, Li;Liu, Chuang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2359-2367
    • /
    • 2016
  • Inductive power transfer (IPT) systems have become increasingly popular in recharging electric vehicle (EV) batteries. This paper presents an investigation of a series parallel/series (SP/S) resonant compensation network based IPT system for EVs with further optimized circular pads (CPs). After the further optimization, the magnetic coupling coefficient and power transfer capacity of the CPs are significantly improved. In this system, based on a series compensation network on the secondary side, the constant output voltage, utilizing a simple yet effective control method (fixed-frequency control), is realized for the receiving terminal at a settled relative position under different load conditions. In addition, with a SP compensation network on the primary side, zero voltage switching (ZVS) of the inverter is universally achieved. Simulations and experiments have been implemented to validate the favorable applicability of the modified optimization of CPs and the proposed SP/S IPT system.

A Study on Optimization of Components Sizing for 4×4 Series Hybrid Electric Propulsion Systems (4륜구동 직렬형 하이브리드 전기추진시스템의 구성품 용량 최적화 연구)

  • Jang, Myeong-Eon;Jeong, Soon-Kyu;Han, Kyu-Hong;Yeo, Seung-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.159-166
    • /
    • 2014
  • The study is conducted on the subject of optimization of components sizing for series hybrid electric propulsion systems. The components sizing of series type hybrid system is very important because each component of series type is larger than the corresponding component of the parallel type or series-parallel type. If the components sizing is greater or less than what is required to this system, the performance of the system is getting worse. The methodology for the sizing of a driving motor is introduced based on the foundation of determined system configuration and performance target. And the sizing of an engine/generator and a battery is achieved based on simulation results using Dynamic Programming. It is possible to find the optimal sizing of these components by comparing fuel efficiency of hybrid electric propulsion system for 8 driving cycles.

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Potential Performance Enhancement of Dual Heat Pump Systems through Series Operation (히트펌프 직렬운전에 의한 성능 향상 가능성에 관한 연구)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Kim, Hyeon-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.797-802
    • /
    • 2012
  • In this study, the potential performance enhancement in a dual heat pump system through series operation was investigated by a comparison between the performance for parallel and series operation for a heating supply temperature of $60^{\circ}C$. To compare the performance of each configuration fairly, the heat transfer surface area of the heat exchangers was fixed. The inlet temperatures and the flow rates of the heat source and the load were also fixed. In addition, the heat transfer and pressure drop characteristics of the working fluids were considered to achieve a more realistic comparison. The results show that the heating coefficient of performance (COP) of the series configuration is approximately 5% higher than that of the parallel configuration under the simulation conditions considered in the present study.

A Study on the Failure Characteristic of Laminated Composites Joint Containing Two Holes in Series or Parallel (복합적층판의 직병렬 유공 접합부의 파손연구)

  • Kwan-Hyung Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.93-102
    • /
    • 1995
  • A series of test was performed by measuring the failure strength and the failure mode of fiber reinforced composite laminates joint containing two holes in Series or Parallel. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate with W/d(Side distance ratio) 4.0 and E/d(Edge distance ratio) 3.0 has the full bearing strength and are preferable in case of the good efficiency in two series hole. Comparisons were made between testing results and predicting values of the FEM model. Good agreements were fecund between them except the case of $E/d=2{\sim}3$. In the case of $G_h{\geq}3.0d$ and $G_v{\geq}3.0d$ since the interaction coefficients between two parallel holes and between two series holes were small, holes can be treated as independent. The Acoustic Emission(AE) and SEM method were utilized to find out the initial defects, damage and the fracture mechanism.

  • PDF