• Title/Summary/Keyword: Series transformer

Search Result 349, Processing Time 0.026 seconds

Input-Series Multiple-Output Auxiliary Power Supply Scheme Based on Transformer-Integration for High-Input-Voltage Applications

  • Meng, Tao;Ben, Hongqi;Wei, Guo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.439-447
    • /
    • 2012
  • In this paper, an input-series auxiliary power supply scheme is proposed, which is suitable for high input voltage and multiple-output applications. The power supply scheme is based on a two-transistor forward topology, all of the series modules have a common duty ratio, all the switches are turned on and off simultaneously, and the whole circuit has a single power transformer. It does not require an additional controller but still achieves efficient input voltage sharing (IVS) for each series module through its inherent transformer-integration strategy. The IVS process of this power supply scheme is analyzed in detail and the design considerations for the related parameters are given. Finally, a 100W multiple-output auxiliary power supply prototype is built, and the experimental results verify the feasibility of the proposed scheme and the validity of the theoretical analysis.

A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model (ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구)

  • Sun-Ju Won;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

Series Compensated Step-down AC Voltage Regulator using AC Chopper with Transformer

  • Ryoo, H.J.;Kim, J.S.;Rim, G.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.277-282
    • /
    • 2005
  • This paper describes a step-down AC voltage regulator using an AC chopper and auxiliary transformer, which is a series connected to the main input. The detail design of the AC regulator, logic and PWM pattern of the AC chopper is described and the three-phase AC regulator using two single­phase AC choppers with a three transformer configuration is proposed for three-phase application. The proposed three-phase system has the advantages of lower system cost due to reduced switch number and gate driver circuit as well as advantages of decreased size and weight because it uses a series compensated scheme. The proposed AC regulator has many benefits such as fast voltage control, high efficiency and simple control logic. Experimental results indicate that it can be used as a step-down AC voltage regulator for power saving purposes very efficiently.

Analysis and Design of Half-Bridge Series Resonant Converter for Non-Contact Battery Charger (무접점 베터리 충전 장치용 Half-Bridge 직렬 공진 컨버터 분석 및 설계)

  • Kim, Chang-Gyun;You, Jung-Sik;Park, Jong-Hu;Cho, Bo-Hyung;Seo, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2508-2511
    • /
    • 1999
  • A non-contact battery charger which transfers energy using magnetic field without any electrical contacts is designed using half-bridge series resonant converter. This converter utilizes series resonance to reduce the undesirable effect of large leakage inductance of the non-contact transformer and ZVS operation can reduce switching losses. In this paper. analysis and design procedure of half-bridge series resonant converter with non-contact transformer is presented. Input voltage is 85VAC ${\sim}$ 270VAC, output voltage and current is 4.1V and 800mA, respectively. Furthermore, a method for calculating the secondary current of the transformer to control battery charging current in constant current charging mode which is required for litium-ion battery is proposed and the performance is verified from experiments.

  • PDF

Analysis and Design of Half-Bridge Resonant Converter for Non-Contact Battery Charger (비접촉식 배터리 충전 장치용 Half-Bridge 직렬 공진 컨버터 분석 및 설계)

  • Kim, Chang-Gyun;Seo, Dong-Hyeon;Yu, Jeong-Sik;Park, Jong-Hu;Jo, Bo-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.265-271
    • /
    • 2000
  • A non-contact battery charger for cellular phone is designed using half-bridge series resonant converter. This converter utilizes series resonance to reduce the undesirable effect of large leakage inductance of the detachable transformer and ZVS operation can reduce switching loss and switching noise. In this paper, analysis and design procedure of half-bridge series resonant converter with detachable transformer is presented. The input voltage is 85VAC∼270VAC, and the output voltage and current is 4.1V and 800mA, respectively. Furthermore, a method of calculating the secondary current of the transformer to control the battery charging current in the constant current charging mode is proposed. The performance of the charger is verified through experiments.

  • PDF

Time-Series Forecasting Based on Multi-Layer Attention Architecture

  • Na Wang;Xianglian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.

Two-Phase Hybrid Forward Convertor with Series-Parallel Auto-Regulated Transformer Windings and a Common Output Inductor

  • Wu, Xinke;Chen, Hui
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.757-765
    • /
    • 2013
  • For conventional interleaved two-phase forward converters with a common output inductor, the maximum duty cycle is 0.5, which limits the voltage range and increases the difficulty of the transformer's optimization. A new two-phase hybrid forward converter with series-parallel auto-regulated transformer windings is presented in this paper. With interleaved control signals for the two phases, the secondary windings of the transformers can work in series when the duty cycle is larger than 0.5, and they can work in parallel when duty cycle is lower than 0.5. Therefore, the maximum duty cycle is extended and the turns ratio of the transformer can be optimized. Duty cycle dependent auto-regulated windings result in the steady states of the converter being different in different duty cycle ranges (D>0.5 and D<0.5). Fortunately, the steady state gains of the proposed hybrid converter are identical at different duty cycle ranges, which means a stepless shift between two states. A prototype is built to verify the theoretical analysis. A conventional control loop is compatible for the whole input voltage range and load range thanks to the stepless shifting between the different duty cycle ranges.

Steady-state Characteristics of the Piezoelectric Transformer and the Design of the Piezoelectric Inverter for Cold Cathode Fluorescent Lamp (압전 변압기의 정상상태 특성과 고효율 냉 음극 방전램프용 인버터 설계)

  • Gwon, Gi-Hyeon;Im, Yeong-Cheol;Yang, Seung-Hak;Jeong, Yeong-Guk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.175-182
    • /
    • 2000
  • The back-light inverter used in the laptop computer is designed in this paper. It has been difficult for electromagnetic transformer to enhance the efficiency and compact profile of the inverter. In this paper, (1) the piezoelectric transformer (PT) is used for reducing the loss; (2) the volumes of core and winding coil are used in electromagnetic transformer, and (3) the half-bridge series parallel resonant circuit is used in the driver of the inverter. The modified PT for this paper and the equivalent circuit are supported by the simulation program. The result of the experiment shows more than 91% improvement in terms of the efficiency.

  • PDF

Efficiency Characteristics of Half-bridge Series Resonant Converter for the Contact-less Power Supply (Half-bridge 직렬공진 컨버터 적용 무접점 전원장치 효율특성)

  • Lee, Hyun-Kwan;Song, Hwan-Kook;Kim, Eun-Soo;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.884-891
    • /
    • 2007
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss and the high voltage gain characteristics for load variations in contact-less power supply (CPS). To consider these characteristics, in this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is presented, described and verified through theoretical analysis, computer simulation and experimental test of 2.5kW prototype.

A NEW INSTANTANEOUS VOLTAGE COMPENSATOR WITH FUNCTION OF ACTIVE POWER FILTERING

  • Lee, Seung-Yo;Lee, Jeong-Min;Lee, Sang-Yong;Mok, Hyung-Soo;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.780-784
    • /
    • 1998
  • A novel active input unbalance voltage compensator with harmonic current compensating capability is proposed and the operating principle of the proposed system is presented in the 3-phase power system. The proposed system performs both the voltage regulation of the load and the compensation of the harmonic currents generated due to nonlinear load such as diode rectifier. The system to compensate unbalanced voltage and hramonic currents is composed of a 3-phase voltage source inverter, LC filter, series transformer and passive devices at the load side of the line. The compensating voltage to regulate the load voltage and to remove the harmonic current components is transmitted to the line by the series transformer. The validity of the line by the series transformer. The validity of the proposed system is proved by the results of computer simulation.

  • PDF