• Title/Summary/Keyword: Series System Reliability

Search Result 285, Processing Time 0.028 seconds

The Study of Failure Mode Data Development and Feature Parameter's Reliability Verification Using LSTM Algorithm for 2-Stroke Low Speed Engine for Ship's Propulsion (선박 추진용 2행정 저속엔진의 고장모드 데이터 개발 및 LSTM 알고리즘을 활용한 특성인자 신뢰성 검증연구)

  • Jae-Cheul Park;Hyuk-Chan Kwon;Chul-Hwan Kim;Hwa-Sup Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.95-109
    • /
    • 2023
  • In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

Sensorless Speed Control of Switched Reluctance Motor Using PIC16 series Micom (PIC 16계열 마이컴을 이용한 센서리스 SRM의 속도제어)

  • Shin, K.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.684-686
    • /
    • 2000
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia. and high efficiency. However position sensor is essential in SRM in order to synchronize the phase excitation to the rotor position. The position sensors increase the cost of drive system and tend to reduce system reliability. This paper investigates the speed control of sensorless SRM in which the phase current and change rate are utilized in position decision, and the period of dwell angle is variable by compensating the rotor angle for speed control. The proposed system consists of position decision. phase locked loop controller, switching angle controller and inverter. The performances in the proposed system are verified through the experiment.

  • PDF

An Expert System Using Diagnostic Parameters for Machine tool Condition Monitioring (공작기계 상태감시용 진단파라미터 전문가 시스템)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.112-122
    • /
    • 1996
  • In order to monitior machine tool condition and diagnose alarm states due to electrical and mechanical faults, and expert system using diagnostic parameters of NC machine tools was developed. A model-based knowledge base was constructed via searching and comparing procedures of diagnostic parameters and state parameters of the machine tool. Diagnostic monitoring results generate through a successive type inference engine were graphically displayed on the screen of the console. The validity and reliability of the expert system was rcrified on a vertical machining center equipped with FANUC OMC through a series of experiments.

  • PDF

A Study on Determining the Size of the Interface Inductor for Grid-Connected Micro-Sources (Micro-Source의 계통 연계용 인덕터 크기 선정에 관한 연구)

  • Son, Kwang-Myung;Kim, Young-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.52-58
    • /
    • 2005
  • The concept of the Micro-Grid comprising Micro-Sources supplying both heat and power ranging from several [KW] to 1[MW] to local customers is proposed by CERTS(Consortium for Electric Reliability Technology Solutions). Micro-Sources adopt environmentally friendly and reliable power sources such as Fuel-Cell and Micro-Turbines. Micro-Sources adopt voltage source inverter with AC grid system in order to provide independent real and reactive power control for premium power quality. Thus Micro-Source needs series inductance for interfacing with AC grid system. With this reason, we propose a technique that can decide the optimal size of the inductor for effective transfer of the power into the grid.

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth;Lokhande, Makarand M.;Karasani, Raghavendra Reddy;Borghate, Vijay B.
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.56-69
    • /
    • 2018
  • In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

Constructing a Competing Risks Model for the Combined Structure with Dependent Relations (종속적 관계를 갖는 혼합구조에 대한 경쟁적 위험모형의 구축)

  • Park, Seonghwan;Park, Jihyun;Bae, Kiho;Ahn, Suneung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.92-98
    • /
    • 2017
  • The rapid growth of engineering technology and the emergence of systemized and large-scale engineering systems have resulted in complexity and uncertainty throughout the lifecycle activities of engineering systems. This complex and large-scale engineering system consists of numerous components, but system failure can be caused by failure of any one of a number of components. There is a real difficulty in managing such a complex and large-scale system as a part. In order to efficiently manage the system and have high reliability, it is necessary to structure a system with a complex structure as a sub-system. Also, in the case of a system in which cause of failures exist at the same time, it is required to identify the correlation of the components lifetime and utilize it for the design policy or maintenance activities of the system. Competitive risk theory has been used as a theory based on this concept. In this study, we apply the competitive risk theory to the models with combined structure of series and parallel which is the basic structure of most complex engineering systems. We construct a competing risks model and propose a mathematical model of net lifetime and crude lifetime for each cause of failure, assuming that the components consisting a parallel system are mutually dependent. In addition, based on the constructed model, the correlation of cause of failure is mathematically analyzed and the hazard function is derived by dividing into net lifetime and crude lifetime.

A Database System for High-Throughput Transposon Display Analyses of Rice

  • Inoue, Etsuko;Yoshihiro, Takuya;Kawaji, Hideya;Horibata, Akira;Nakagawa, Masaru
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.15-20
    • /
    • 2005
  • We developed a database system to enable efficient and high-throughput transposon analyses in rice. We grow large-scale mutant series of rice by taking advantage of an active MITE transposon mPing, and apply the transposon display method to them to study correlation between genotypes and phenotypes. But the analytical phase, in which we find mutation spots from waveform data called fragment profiles, involves several problems from a viewpoint of labor amount, data management, and reliability of the result. As a solution, our database system manages all the analytical data throughout the experiments, and provides several functions and well designed web interfaces to perform overall analyses reliably and efficiently.

  • PDF

Development of the 120kW Class MPC Power Supply for DeNOx and DeSox System (120kW급 탈황탈질용 MPC전원장치 개발)

  • Kim, Soo-Hong;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.237-239
    • /
    • 2009
  • This paper presents a new developed 160kV-120kW Class MPC (magnetic pulse compressor) power supply for DeNOx, DeSOx system. The circuit consists of N-series connected CCPS (capacitor charging power supply) and MPC Tank. The MPC power supply developed compared to the conventional LC resonant type has many advantage, it was verified reliability of a product by module, simulator and tank connection test. Now, the developed MPC power supply is installed POSCO sintering plant for DeSOx, DeNOx system.

  • PDF

Rapid Prototyping of Aero-engine Complex Control Method

  • Lu, Jun;Guo, Ying-Ging;Wang, Bin-Zheng
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.59-62
    • /
    • 2008
  • This paper presents an approach of complex control method(CCM) real-time simulation and rapid prototyping for aero-engine control system and describes its principle and realization in detail. This approach is mainly based on MATLAB/RTW for rapid prototyping from system modeling to embedded implementation. According to the simulation results between automatic code and manual code for an aeroengine multi-variable control method, it shows that this approach is feasible and effective, and not only decreases development cycle but also improves the reliability and universality. So a series of problems can be resolved during the simulation stage and rapid application to prototype testing.

  • PDF