• 제목/요약/키워드: Series DC/DC Converter

검색결과 295건 처리시간 0.026초

친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템 (Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor)

  • 손진근;전희종
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

변압기 직렬구조의 EV용 승압형 양방향 ZCS DC/DC 컨버터 개발 (Development of Boost Type Bidirectional ZCS DC/DC Converter For EV of Transformer Series Construction)

  • 최정식;박병철;정동화;송성근
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.37-46
    • /
    • 2013
  • This paper proposes the boost type bidirectional zero current switching(ZCS) DC/DC converter of transformer series construction for electric vehicle operation using low voltage battery. This converter can high boost through the double voltage circuit and series construction of output part using two converters. This converter system has the advantages that bidirectional power transfer is excellent, size and making of transformer because of this converter keeps the transformation ratio to 1:1. Proposed DC/DC converter uses the ZCS method to decrease the switching loss. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer and half-bridge capacitor it reduces system size and expense because of not add special reactor. It can confirm to output of high voltage to operate the electric vehicle with low voltage of input and operation of ZCS in all load region through the result of PSIM simulation and experiment.

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

광전지 패널과 DC-DC 컨버터 출력의 직렬 접속을 이용한 고효율 PV 시스템 (A high efficient PV system using series connection of DC-DC converter's output with photovoltaic panel)

  • 김호성;김종현;민병덕;유동욱;홍지태;이동길;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1146-1147
    • /
    • 2008
  • PV Power Conditioning System (PCS) must have high conversion and low cost. Generally, PV PCS uses either a single converter or multilevel module integrated converter (MIC). Each of these approaches has both advantage and disadvantage. For a high conversion efficiency and low cost of PV module, this paper proposes series connection of module integrated DC-DC converter's output with PV panel. Output voltage of PV panel is connected to the output capacitor of flyback converter. Thus, converter's output voltage is added to the output voltage of PV panel. Isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces power level of DC-DC converter and enhances the energy conversion efficiency compared with conventional DC-DC converter.

  • PDF

다중공진회로를 이용한 고효율 DC-DC 컨버터 (High-Efficiency DC-DC Converter using the Multi-Resonant-Circuit)

  • 정강률
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.218-228
    • /
    • 2021
  • 본 논문에서는 다중공진회로를 이용한 고효율 DC-DC 컨버터를 제안한다. 제안한 컨버터는 하프브리지 전력구조이며 컨버터의 고효율화를 위해 2개의 인덕터(LL)와 1개의 커패시터(C)로 구성된 다중공진회로를 이용한다. 이 다중공진회로는 동작모드에 따라, 각각의 공진주파수를 가진 직렬회로 형태의 공진회로를 각각 형성한다. 본 논문에서는 먼저, 동작모드와 정상상태 기본파 근사 모델링에 의해 제안한 컨버터의 동작원리를 설명한다. 그다음 이에 근거하여 제안한 컨버터의 설계예시를 보인다. 그리고 설계된 회로 파라미터에 의해 제작된 프로토타입 컨버터의 실험결과를 통하여 제안한 컨버터의 고효율 DC-DC 전력변환 동작특성을 입증한다.

비접촉 전원장치에 적용한 직병렬 공진형 DC/DC 컨버터의 특성해석 (A Characteristic Analysis of the Series-Parallel Resonant type DC/DC Converter for Contactless Power System)

  • 황계호;이영식;방덕제;문인호;남승식;배영호;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1425-1427
    • /
    • 2005
  • In this paper, with loosely coupled transformer series-parallel resonant type DC/DC converter is analyzed. To get more efficient operating mode of the series-parallel resonant type DC/DC converter, theoretical analysis using normalized parameters are accepted. The proposed converter must be operated in Pulse Frequency Modulation(PFM) switching pattern for the Zero Voltage Switching(ZVS) operation. According to PFM control method, the output voltage of the proposed circuit can be controlled.

  • PDF

DC/DC 컨버터를 이용한 DC Bus 커패시터의 간단한 ESR 측정 기법 (A Simple ESR Measurement Method for DC Bus Capacitor Using DC/DC Converter)

  • 손진근;김진식
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.372-376
    • /
    • 2010
  • Electrolytic capacitors have been widely used in power electronics system because of the features of large capacitance, small size, high-voltage, and low-cost. Electrolytic capacitors, which is most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. Therefore it is important to estimate the parameter of an electrolytic capacitor to predict the failure. The estimation of the equivalent series resistance(ESR) is important parameter in life condition monitoring of electrolytic capacitor. This paper proposes a simple technique to measure the ESR of an electrolytic capacitor. This method uses a switching DC/DC boost converter to measure the DC Bus capacitor ESR of power converter. Main advantage of the proposed method is very simple in technique, consumes very little time and requires only simple instruments. Simulation results are shown to verify the performance of the proposed method.

고역률을 갖는 단일 전력변환 AC-DC 컨버터 (Single Power-conversion AC-DC Converter with High Power Factor)

  • 조용원;박천윤;권봉환
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a single power-conversion ac-dc converter with a dc-link capacitor-less and high power factor. The proposed converter is derived by integrating a full-bridge diode rectifier and a series-resonant active-clamp dc-dc converter. To obtain a high power factor without a power factor correction circuit, this paper proposes a suitable control algorithm for the proposed converter. The proposed converter provides single power-conversion by using the proposed control algorithm for both power factor correction and output control. Also, the active-clamp circuit clamps the surge voltage of switches and recycles the energy stored in the leakage inductance of the transformer. Moreover, it provides zero-voltage turn-on switching of the switches. Also, a series-resonant circuit of the output-voltage doubler removes the reverse-recovery problem of the output diodes. The proposed converter provides maximum power factor of 0.995 and maximum efficiency of 95.1% at the full-load. The operation principle of the converter is analyzed and verified. Experimental results for a 400W ac-dc converter at a constant switching frequency of 50kHz are obtained to show the performance of the proposed converter.

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

Analysis, Design and Implementation of an Interleaved DC/DC Converter with Series-Connected Transformers

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.643-653
    • /
    • 2012
  • An interleaved DC/DC converter with series-connected transformers is presented to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two half-bridge converter cells connected in series to reduce the voltage stress of the switches at one-half of the input voltage. The output sides of the two converter cells with interleaved pulse-width modulation are connected in parallel to reduce the ripple current at the output capacitor and to achieve load current sharing. Therefore, the size of the output chokes and the capacitor can be reduced. The output capacitances of the MOSFETs and the resonant inductances are resonant at the transition instant to achieve ZVS turn-on. In addition, the switching losses on the power switches are reduced. Finally, experiments on a laboratory prototype (24V/40A) are provided to demonstrate the performance of the proposed converter.