• Title/Summary/Keyword: Series Boost Capacitor

Search Result 43, Processing Time 0.041 seconds

A Study of MPPT Control Algorithm for Boost Converter of Photovoltaic System Considering Capacitor Equivalent Series Resistance (커패시턴스 내부저항을 고려한 태양광용 Boost 컨버터에 대한 MPPT 제어 알고리듬 고찰)

  • Choi J. Y.;Yu G. J.;Lee D. G.;Lee K. O.;Jung Y. S.;Kim K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.109-114
    • /
    • 2001
  • Photovoltaic systems normally use a maximum power point tracking (MPPT) technique to continuously deliver the highest possible power to the load when variations in the insolation and temperature occur. A simple method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter. This paper aims at modeling boost converter including equivalent series resistance of input reservoir capacitor by state-space-averaging method. In the future, properly designed controller for compensation will be constructed for maximum photovoltaic power tracking control.

  • PDF

Single Phase SRM Converter with Boost Negative Bias (부스트 Negative Bias를 가지는 단상 SRM 컨버터)

  • Liang, Jianing;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.879-880
    • /
    • 2008
  • At the high speed operation, the boost negative bias can reduce the negative torque and increase the dwell angle, so the output power and efficiency can be improved. In this paper, a novel power converter for single phase SRM with boost negative bias is proposed. A simple passive capacitor circuit is added in the front-end, which consists of three diodes and one capacitor. Based on this passive capacitor network, the two capacitors can be connected in series and parallel in different condition. In proposed converter, the phase winding of SRM obtains general dc-link voltage in excitation mode and the double dc-link voltage in demagnetization mode. The operation modes of the proposed converter are analyzed in detail. Some computer simulation and experimental results are done to verify the performance of proposed converter.

  • PDF

Boost Converter Modelling of Photovoltaic Conditioning System Considering Input Capacitor (입력 커패시턴스를 포함한 PV Boost Converter 모델링)

  • Choi, Ju-Yeop;Lee, Ki-Ok;Choy, Ick;Song, Seung-Ho;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.85-95
    • /
    • 2008
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

The Secondary LLC Series Resonant Converter for the Boost DC/DC Converter (변압기 2차측 LLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Lee Hyun-Kwan;Cha In-Su;Lee Gi-Sik;Chung Bong-Geun;Kang Sung-In;Kim Eun-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.423-429
    • /
    • 2006
  • Recently, the high frequency isolated boost DC/DC converter has been widely used for the PCS (Power Conditioning System) system because of its small size and low cost. However, the high frequency isolated boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have the problems such as the high conduction losses and the surge voltage due to the high circulating current and the leakage inductance, respectively. To overcome this problems, in this paper the secondary LLC resonant converter is proposed, and the experimental results of the secondary LLC series resonant converter for boost DC/DC converter are verified on the simulation based on the theoretical analysis and the 700W experimental prototype.

Circuit configuration of step-up converter with reduced working voltage of output capacitor (출력커패시터 내압 저감이 가능한 승압 컨버터 구조)

  • Kim, Sun-pil;Park, Sung-Jun;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.630-637
    • /
    • 2018
  • To supply a high voltage to an inverter, a motor control unit (MCU) generally employs a front-end boost converter. Because it generates a high output voltage, the converter needs an output capacitor, which has a high working voltage resulted in cost increasing. To solve this problem, we present a bidirectional dc-to-dc converter, which can decrease a working voltage of the output capacitor. Basic characteristic of the proposed converter is similar to a conventional boost converter. A difference comes from the structure of the output terminal connecting an output capacitor and an input battery in series. Owing to this circuit configuration, the working voltage of the output capacitor becomes lower than that of a conventional boost converter. After theoretical analysis, we carry out simulations and experiments to verify the validity and performance comparing with a conventional boost converter.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

A Single-Phase Hybrid Multi-Level Converter with Less Number of Components

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.105-107
    • /
    • 2018
  • This paper presents a new hybrid multilevel converter topology, which consists of a combination of the series connected switched capacitor units with boost ability, and an H-bridge with T-type bidirectional switches. The proposed converter boosts the input voltage without any bulky inductors, and has the small number of components, which can make the size and cost of a power converter greatly reduced. The output filter size and harmonics are also reduced by the high quality multilevel output. In addition, there is no need for complicated methods to balance the capacitor voltage. Simulation and experimental results with a nine-level converter system are presented to validate the proposed topology and modulation method.

  • PDF

Boost Converter Modeling of Photovoltaic Conditioning System for MPPT ("PV Converter 모델링"을 적용한 MPPT제어기법)

  • Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.1-13
    • /
    • 2009
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model and compares both methods using Bode plots. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Development of Boost Type Bidirectional ZCS DC/DC Converter For EV of Transformer Series Construction (변압기 직렬구조의 EV용 승압형 양방향 ZCS DC/DC 컨버터 개발)

  • Choi, Jung-Sik;Park, Byung-Chul;Chung, Dong-Hwa;Song, Sung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.37-46
    • /
    • 2013
  • This paper proposes the boost type bidirectional zero current switching(ZCS) DC/DC converter of transformer series construction for electric vehicle operation using low voltage battery. This converter can high boost through the double voltage circuit and series construction of output part using two converters. This converter system has the advantages that bidirectional power transfer is excellent, size and making of transformer because of this converter keeps the transformation ratio to 1:1. Proposed DC/DC converter uses the ZCS method to decrease the switching loss. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer and half-bridge capacitor it reduces system size and expense because of not add special reactor. It can confirm to output of high voltage to operate the electric vehicle with low voltage of input and operation of ZCS in all load region through the result of PSIM simulation and experiment.

ZC-ZVS PWM DC-DC Converter using One Auxiliary Switch (단일 보조 스위치를 이용한 ZC-ZVS PWM DC-DC 컨버터)

  • Park, J.M.;Park, Y.J.;Suh, K.Y.;Mun, S.P.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.158-161
    • /
    • 2003
  • A new soft switching technique that improves performance of the high power factor boost rectifier by reducing switching losses is introduced. The losses are reduced by air active snubber which consists of an inductor, a capacitor a rectifier, and an auxiliary switch. Since the boost switch turns off with zero current, this technique is well suited for implementations with insulated gate bipolar transistors. The reverse recovery related losses of the rectifier are also reduced by the snubber inductor which is connected in series with the boost switch and the boost rectifier. In addition, the auxiliary switch operates with zero voltage switching. A complete design procedure and extensive performance evaluation of the proposed active snubber using a 1.2[kW] high power factor boost rectifier operating from a $90[V_{rms}]$ input are also presented.

  • PDF